
-GENERATED HPC CENTER INFRASTRUCTURE

First Workshop on Reproducible Soware Environments
Montpellier, 2023/11/09

Yann Dupont <Yann.Dupont@univ-nantes.fr>

1 / 34

DISCLAIMER: WE WON’T TALK ABOUT SCIENCE
… Plumbing[1] session.

(infrastructures[2].)

Making this activity more …

fun ? noble ? reliable ? reproducible ?

1. I am infrastructures engineer / digital plumber at GLiCID.
2. gaz plant : french way to speak of arcane systems .

2 / 34

GLICID : HPC "PAYS DE LA LOIRE"

HPC center for >300 regional researchers
Hardware located in Nantes

3 clusters : (managed as one)
(SLURM_CLUSTERS="all")

Waves (Historical) :
6712 cores (all kind)
50 GPU (all kind)
OPA and RoCE, very heterogeneous

Nautilus (New) :
5376 cores AMD Genoa
16 GPU A100
IB 100

Phileas (mesonet, to come !) :
3072 cores Intel Sapphire rapids
IB 100 3 / 34

DACAS / GLICID

3 parts CPER DACAS :
Datacentre (2025 or 2026),
Regional network (2023-06)
HPC (GLiCID), different clusters :

Nautilus (1st Slice, 2023-06)

Old "Waves" will migrate end 2023

Slices 2 et 3 of HPC cluster to come
(installation in new datacentre)

CPER is a French three part contract
Contrat Plan-État-Région

(means … money allocation)

Installation split between rooms (until 2025/2026)

Single link 100 Gb/s since 11/2021
4 / 34

3 SLICES
3 slices = 3 public procurements = differents solution providers

Compatibility of hardware and soware solutions not guaranteed

1st slice constrained by time

Autonomous cluster (with proprietary soware…)
intended to be inserted as soon as possible into the new infrastructure

 From 2022: choice of neutrality, independence and control:

New infrastructure managed entirely in-house

5 / 34

NEW INFRASTRUCTURE TO START

Distributed, shared, redundant

Parallel deployment with "Waves" of :

Network (Fabric, Open Networking)

Ceph storage (NVME AND volumetric (multiple PB))

Services

High availability management

Identity management

Slurm on the "Waves" side (several separate clusters working in concert)

[…]

Simple to redeploy in case of problems

Low adherence to the solutions deployed by manufacturers

Choice : KVM virtual infrastructure (→) and
6 / 34

GUIX : REPRODUCIBLE SOFTWARE PACKAGES
Well suited to HPC : growing usage on Waves since 2019

User autonomy to manage their soware (dependencies and versions)

Elegant way to escape from “dependancy hell”

Creation and follow-up of cluster-specific packages by the team

7 / 34

GLICID CHANNEL CONTENT

1 “GLiCID” channel used in addition to the official channel

Adds soware packages and services :

Non-existent (slurmctld service, scientific packages)

Newer or incompatible versions (libfabric for RoCE)

Specific derivations adapted to GLiCID (slurm with openpmix v3 & openmpi-glicid)

Follow the evolution of the main branch (qemu-with-rbd)

Direct use possible in our VMs

$ guix pull

[…]

Building from these channels:

 guix https://git.savannah.gnu.org/git/guix.git dcca13e

 glicid https://gitlab.univ-nantes.fr/glicid-public/guix-glicid.git acb78c3 1

$ guix package -A | grep glicid

slurm-glicid 22.05.9 out glicid/packages/parallel.scm:159:2

[…]

qemu-with-rbd 8.1.0 out,static,doc glicid/packages/virtualization.scm:17:2

8 / 34

GUIX, THE SWISS ARMY KNIFE OF THE DIGITAL PLUMBER
Guix does wonders with soware reproducibility…

Should be great to do the same with operating systems deployments

 Guix is far from just a package manager!

guix --help

guix pull

guix package

guix time-machine
[…]

guix system
[…]

guix system image (« build a Guix System image »)

docker-image
[…]

9 / 34

GUIX SYSTEM IMAGE

File to provide: Guile program[1], returns an object of the type expected by the action.

guix system image: expects “operating-system” object

1. YES, a program, not a simple definition

Usage: guix system [OPTION ...] ACTION [ARG ...] [FILE]

Build the operating system declared in FILE according to ACTION.

Some ACTIONS support additional ARGS.

The valid values for ACTION are:

[...]

 image build a Guix System image

[...]

10 / 34

GUILE, SCHEME

Everything is programmed in Guile (functional language, Scheme dialect, Lisp family):
definitions of packages, services and systems

Knowledge not strictly necessary at the beginning (copy/paste of definitions)

Declare complex systems → more complex writing → deeper knowledge of Guile

Official documentation, cookbook, community: lists, ,

 Syntax rich in “(” and “)”, like it or not…

(function arg1 arg2 (function-that-returns-arg3 arg1-of-this-one))

11 / 34

OPERATING-SYSTEM : DOCUMENTATION

Record guix, many fields, but many default values
12 / 34

MINIMUM VM DEFINITION

1 3 strictly necessary fields, all others are by default

2 Optional, for launching qemu in text mode

(use-modules (gnu))

(operating-system

 (host-name "mini-1")

 (bootloader (bootloader-configuration

 (bootloader grub-bootloader)

 (targets '("/dev/sda"))))

 (file-systems (cons (file-system

 (device (file-system-label "my-root"))

 (mount-point "/")

 (type "ext4")) %base-file-systems))

 (kernel-arguments (list "console=tty0 console=ttyS0,115200")))

1

1

1

2

$ guix system image simple-1.scm -r virtsimple1.img

$ qemu-system-x86_64 -enable-kvm -nographic -m 4G virtsimple1.img

GRUB loading.

[0.000000] Linux version 6.4.16-gnu (guix@guix) (gcc (GCC) 11.3.0, GNU ld (GNU Binutils) 2.38) #1 SMP PREEMPT_DYNAMIC 1

[0.000000] Command line: BOOT_IMAGE=/gnu/store/qhynq8jfskirrn7fj5965ajmrs7zfshc-linux-libre-6.4.16/bzImage root=38af4c98-

[0.000000] KERNEL supported cpus:

[0.000000] Intel GenuineIntel

[…]

This is the GNU system. Welcome.

mini-1 login: root

This is the GNU operating system, welcome!

root@mini-1 ~#
13 / 34

👍 IT WORKS :

Generation of a complete operating system

Definition of less than 15 lines, with nothing more

Without downloading installation media

Up to date (e.g. kernel 6.5.9)

No need to customize aerwards (eg: ansible)

The definition is minimal, but the VM is not

Basic packages are not required as part of VM.

14 / 34

THE ONLY THING LEFT TO DO IS

(Untranslatable bad french joke : Yack à faucon)

Remove the superfluous, add packages AND
services:
add and modify list entries
%base-packages and %base-services

Factor functions and configurations between OS:
create templates for simple writing
guile module (glicid template v3)

More advanced system for launching VMs:

libvirt/virt-manager

Proxmox

15 / 34

GLICID TEMPLATE

1 Numerous definitions of networks, gateways, name servers…

2 Different service lists (also package lists), specific configs

3 Operating system definitions configured and ready for inheritance

(define-public %ccipl-net-v4-cluster "10.141.0.0/16")

(define-public %glicid-net-gateway "10.50.255.254")

(define-public %glicid-net-gateway "10.141.255.252")

(define-public %glicid-dmznet-gateway "xx.yy.zz.1")

(define-public %glicid-base-services

 (append (list

 glicid-default-ssh-services

 glicid-default-ntp-services

[…]

(define-public %glicid-one-disk-vm-os

 (operating-system

[…]

 (packages %glicid-base-packages)

 (services %glicid-base-services)))

1

2

3

16 / 34

GLICID FULL “DEBUG” VM

1 Static-networking service specific to each VM instance

2 “Debug” variant of the GLiCID template: the richest in options

INCLUDED:

Network seings, DNS, NTP, SSH + admin keys, Syslog, Zabbix and Qemu Agents, Guix Channels…

Debug variant adds: NSS LDAP, NSCD seings, configs by GIT, editors and numerous debug tools…

(use-modules (glicid template v3) (gnu services networking))

(define test001-ip (list (network-address (device "eth0") (value "10.50.103.201/16"))))

(define custom-net

 (service static-networking-service-type

 (list (static-networking (addresses test001-ip)

 (routes %glicid-testnet-default-routes)

 (name-servers %glicid-testnet-name-servers)))))

(define %base-os %glicid-one-disk-debug-os)

(define %inherited-services (operating-system-user-services %base-os))

(operating-system

 (inherit %base-os)

 (host-name "test001")

 (services (append (list custom-net) %inherited-services)))

1

2

1

17 / 34

VM BUILDS

1 Image created in the local GUIX store

2 Copied to Ceph pool RBD_4R_GLiCID (time-stamped name)

3 Image clone (VMroot_for-slides-test001_candidate)

A script allows you to rename this candidate to the name used by KVM or proxmox (vm-233-disk-0).

 Images usable wherever CEPH is available

for-slides/test001$./build.sh

RBD_4R_GLiCID/VMroot_for-slides-test001_202309242151

substitute: updating substitutes from 'https://guix-substitutes.glicid.fr'... 100.0%

substitute: updating substitutes from 'https://ci.guix.gnu.org'... 100.0%

substitute: updating substitutes from 'https://bordeaux.guix.gnu.org'... 100.0%

0.4 MB will be downloaded

[…]

The following derivations will be built:

/gnu/store/36qi998hw15s02ipa7czlcs2iry46cfn-disk-image.drv

/gnu/store/ara6gi64cdm2hd8jvb4gg7mxy4p4ziwj-genimage.cfg.drv

/gnu/store/qc5a0bvfdhz2nqhy48j6qvxfhlzrb6rq-partition.img.drv

[…]

building /gnu/store/ara6gi64cdm2hd8jvb4gg7mxy4p4ziwj-genimage.cfg.drv...

building /gnu/store/36qi998hw15s02ipa7czlcs2iry46cfn-disk-image.drv...

/gnu/store/b34n9k0hcwaanacgf2g1zp2vnxjj4yim-disk-image

dd to ceph, please wait, will take time

real 1m5.389s

2

1

2

3

18 / 34

DEPLOY ON PROXMOX

 VM Guix VM Debian VM Centos

Disks identified as follows: vm-xxx-disk-yyy, here vm-127-disk-0

0 deployment scripts… just an image change
19 / 34

HERE WE GO !
(Some services are in high availability)

1 Special trick required

 In certain cases, creation of new services (ldap, slurmctld, etc.)

- crossed load balancers (keepalived) (4 Intra, 4 Pub)

- DNS

- LDAP

- SSH proxies

- “Block” and clustered NFS servers

- mirrors, proxies, reverse proxies, WWW servers

- zabbix server

- DB : mysql, postgresql + timescaledb

- slurmctld, slurmdbd

- login and devel machines (slurm client)

- virtual pseudo computing nodes (slurm client)

1

1

20 / 34

IMMUTABLE MACHINES
The configuration is usually embedded in /gnu/store

/gnu/store is read-only

Immutable AND volatile machines : update = regenerate the machine!

Easy, repeatable deployment in seconds

Generation → VM OFF → image change → VM ON

Stateless VM; some hold persistent data.

Use of %glicid-two-disks… templates : persistent LVM2 volumes

Snapshot persistent volume for deployment of new versions

…4mrz9wlf-chrony-4.3/sbin/chronyd -d -f /gnu/store/n1…1f5bq7c7wc-chrony.conf

…4gy9y9bx-rsyslog-8.2212.0/sbin/rsyslogd -n -f /gnu/store/qx…7x-rsyslog.conf

21 / 34

DEPLOYMENTS FOR THE WHOLE CLUSTER

all cluster machines mount guix-store.intra.glicid.fr:/gnu and /var/gnu

all cluster machines define GUIX_DAEMON_SOCKET="guix://guix-store.intra.glicid.fr"

consistent uid/gid thanks to LDAP

guix-store.intra.glicid.fr is running guix-daemon and exports /gnu and /var/gnu

Cephfs should be the right way to do it…

Currently, MDS ceph servers (FS metadata) not enjoying tons of links…

For the moment : NFS

Transition problem : exporting Cephfs with NFS is a bad idea (locks, scalability AND stability problems)

So… NFS with ceph block devices (RBD) : no high availability

 Works well with foreign distros (no /gnu/store …)

22 / 34

SPECIAL CASE : GUIX-GENERATED NODES
 local /gnu/store already exists !

→ Special trick needed…

1 mount the shared store on a specific path

2 create an overlayfs witch 2 stores as lowerdirs, effectively joining them, and mount on a specific path

3 the resulting mount is bind mounted on /gnu, "masking" the old local /gnu

mount.nfs guix-store.intra.glicid.fr:/gnu /composite-guix/shared/gnu

mount -t overlay overlay -o lowerdir=/composite-guix/shared/gnu:/gnu /composite-guix/overlay/gnu

mount -o bind /composite-guix/overlay/gnu /gnu/

1

2

3

23 / 34

RESPONSIVENESS AND CONTROL

Early September 2023:

Our slurm uses pmix v3 for compatibility with the “Nautilus” slurm (installed by the manufacturer). 24 / 34

OPENPMIX PACKAGE UPDATE

1 Inherit from a close version

2 Change version and set it as new stable version

3 Change the checksum of the package source.

Updates: slurm-glicid, openmpi-glicid… and the many packages that depend on it

Newly deployed VMs are not vulnerable

+(define-public openpmix-3.2.5

+ (package

+ (inherit openpmix-3.2.4)

+ (version "3.2.5")

+ (source (origin

+ (method url-fetch)

+ (uri (string-append

+ "https://github.com/openpmix/openpmix/releases/download/v" version "/pmix-" version ".tar.bz2"))

+ (sha256

+ (base32

+ "13cc11wxf00w485h6pxjcpwziihaix1pj9rrd20cis1i4bi2hrfv"))))))

 (define-public openpmix-4.1.0

 (package

@@ -95,7 +111,7 @@

 (define-public openpmix-3

- openpmix-3.2.4)

+ openpmix-3.2.5)

1

2

2

3

2

25 / 34

GUIX VS ANSIBLE/PUPPET/CHEF/SALT
 One does not prevent the others…

Generate a complete and fully configured system

Writing in a programming language, intelligence and freedom possible

guix deploy : meets the needs of massive deployments

vs

Configuration files specific to the system used

Modify and reconfigure a pre-installed system (how/by whom?)

 “immutable” aspect lost .

26 / 34

EXOTIC ARCHITECTURES

1 Interesting for foresight

… Works straight away! (tested on qemu and ARM and Risc-V physical machines)

Limitations for certain packages (not cross-compilable or unsupported architecture)

guix system --list-targets

The available targets are:

 - aarch64-linux-gnu

 - arm-linux-gnueabihf

 - i586-pc-gnu

 - i686-linux-gnu

 - i686-w64-mingw32

 - mips64el-linux-gnu

 - powerpc-linux-gnu

 - powerpc64le-linux-gnu

 - riscv64-linux-gnu

 - x86_64-linux-gnu

 - x86_64-w64-mingw32

1

1

$ guix system image virtrv.scm --target=riscv64-linux-gnu

27 / 34

CROSS-COMPILATION ?
$ guix system image virtrv.scm --target=riscv64-linux-gnu

28 / 34

CROSS-COMPILATION !

29 / 34

START VM
Use qemu, local uboot installation

guix shell --container --link-profile qemu opensbi-generic u-boot-qemu-riscv64-smode -- \

qemu-system-riscv64 -M virt -nographic \

-bios ~/.guix-profile/fw_jump.elf \

-kernel ~/.guix-profile/libexec/u-boot.bin \

-m 3G \

-device virtio-blk-device,drive=hd0 -drive format=raw,file=virtrv.img,id=hd0

30 / 34

START VM

31 / 34

SUMMARY: PROS

Composition of operating systems

(inherit base-os) = common core, risks of errors or omissions minimized

Effort pays off: capitalization, few rewrites observed in almost 3 years, time saved ultimately

Control and chain of trust that go very far

Minimal boostrap, controlled sources, reproducible binaries and operating system

Fine control of what is installed, kernel “hardening” possible

Specific soware and dependencies integrated consistently throughout

Constants (networks, etc.) easy to modify: easy massive redeployment (GLiCID test/alpha/beta)

Disposable machines that can be redeployed at will

No configuration aer the fact

System reproducibility! (time-machine is usable)

Simple rollback (caution: snapshots for stateful VM volumes)

Machine definitions (and GUIX templates) are in GIT 32 / 34

SUMMARY: CONS

Guile requires some learning

Different appropriation depending on team members

“Everyone does it differently.”

If service or package not yet ported :

Get on with it : sometimes complicated

Spending time there: scarce resource…

Some packages or services require too much effort: GLOBAL effort required

Easy solution: deploy “ready-made” products temporarily

And try later :/

Does not protect against bugs (package updates, etc.)

Beware of overconfidence and redeployment without verification

“Bus factor”

3 team members regularly generate packages and VMs. 33 / 34

THANK YOU FOR YOUR ATTENTION
estions ?

34 / 34

