
What is Guix?

Josselin Poiret

Nantes Université ; Gallinette Team, Inria

November 8, 2023

Who has heard about Guix before?

Who could concisely describe what Guix can do?

Who has heard about Guix before?

Who could concisely describe what Guix can do?

Guix seems hard to pin down.

You may have heard any
combination of the following:

I Guix is a functional package manager;

I Guix is a Linux distribution;

I Guix is a computing environment tool;

I Guix is a time-machine;

I Guix is just French Nix.

Make up your mind!

Guix seems hard to pin down. You may have heard any
combination of the following:

I Guix is a functional package manager;

I Guix is a Linux distribution;

I Guix is a computing environment tool;

I Guix is a time-machine;

I Guix is just French Nix.

Make up your mind!

Guix seems hard to pin down. You may have heard any
combination of the following:

I Guix is a functional package manager;

I Guix is a Linux distribution;

I Guix is a computing environment tool;

I Guix is a time-machine;

I Guix is just French Nix.

Make up your mind!

Guix seems hard to pin down. You may have heard any
combination of the following:

I Guix is a functional package manager;

I Guix is a Linux distribution;

I Guix is a computing environment tool;

I Guix is a time-machine;

I Guix is just French Nix.

Make up your mind!

Guix seems hard to pin down. You may have heard any
combination of the following:

I Guix is a functional package manager;

I Guix is a Linux distribution;

I Guix is a computing environment tool;

I Guix is a time-machine;

I Guix is just French Nix.

Make up your mind!

Guix seems hard to pin down. You may have heard any
combination of the following:

I Guix is a functional package manager;

I Guix is a Linux distribution;

I Guix is a computing environment tool;

I Guix is a time-machine;

I Guix is just French Nix.

Make up your mind!

Guix seems hard to pin down. You may have heard any
combination of the following:

I Guix is a functional package manager;

I Guix is a Linux distribution;

I Guix is a computing environment tool;

I Guix is a time-machine;

I Guix is just French Nix.

Make up your mind!

Guix seems hard to pin down. You may have heard any
combination of the following:

I Guix is a functional package manager;

I Guix is a Linux distribution;

I Guix is a computing environment tool;

I Guix is a time-machine;

I Guix is just French Nix.

Make up your mind!

We’ll focus on how Guix helps us achieve reproducibility.

But also some other nice Guix features along the way!

Guix is a package manager:

$ guix install agda

[...]

$ agda MyCoolTheorem.agda

$ guix install ocaml

[...]

$ ocamlopt simulation.ml

It can run on top of any distribution and won’t interfere with it.

Guix is a package manager:

$ guix install agda

[...]

$ agda MyCoolTheorem.agda

$ guix install ocaml

[...]

$ ocamlopt simulation.ml

It can run on top of any distribution and won’t interfere with it.

More importantly, Guix is a functional package manager.

In Guix, packages are pure functions

dependencies + source 7→ build output

i.e. if you give it the same dependencies and source, it should give
you exactly the same result, bit-for-bit.

More importantly, Guix is a functional package manager.

In Guix, packages are pure functions

dependencies + source 7→ build output

i.e. if you give it the same dependencies and source, it should give
you exactly the same result, bit-for-bit.

Guix achieves this by storing each build output in /gnu/store,
under a directory

hash(dependencies, recipe, source)-name-version

This has several ramifications:

I Multiple library versions can co-exist (even the same library
version but built with different dependencies!);

I We can easily identify references to dependencies in a build
output;

I We never modify state! You don’t need to do a rebuild dance
when a library is updated;

I We know the output store path beforehand, so we can
download it from a substitute server instead!

This has several ramifications:

I Multiple library versions can co-exist (even the same library
version but built with different dependencies!);

I We can easily identify references to dependencies in a build
output;

I We never modify state! You don’t need to do a rebuild dance
when a library is updated;

I We know the output store path beforehand, so we can
download it from a substitute server instead!

This has several ramifications:

I Multiple library versions can co-exist (even the same library
version but built with different dependencies!);

I We can easily identify references to dependencies in a build
output;

I We never modify state! You don’t need to do a rebuild dance
when a library is updated;

I We know the output store path beforehand, so we can
download it from a substitute server instead!

This has several ramifications:

I Multiple library versions can co-exist (even the same library
version but built with different dependencies!);

I We can easily identify references to dependencies in a build
output;

I We never modify state! You don’t need to do a rebuild dance
when a library is updated;

I We know the output store path beforehand, so we can
download it from a substitute server instead!

This has several ramifications:

I Multiple library versions can co-exist (even the same library
version but built with different dependencies!);

I We can easily identify references to dependencies in a build
output;

I We never modify state! You don’t need to do a rebuild dance
when a library is updated;

I We know the output store path beforehand, so we can
download it from a substitute server instead!

How do we make package builds free of side-effects? What
prevents other package managers/build systems from building
reproducibly?

The Docker example

Alice uses a Docker image hosted on nicehub.com for their
research, and tells Bob that if they want to reproduce it, they can
just do docker pull cool-research and start using it as
well.

Bob, whose mailbox was full at the time, only receives that mail 2
years later, but is excited to try it out! They run the command,
only to realise that nicehub.com has decided to delete all built
images for free users…

“I’ll just rebuild it myself, then!”. But Bob opens the Dockerfile,
only to discover the following first two lines:

FROM ubuntu@latest

RUN apt-get update && apt-get upgrade

The Docker example

Alice uses a Docker image hosted on nicehub.com for their
research, and tells Bob that if they want to reproduce it, they can
just do docker pull cool-research and start using it as
well.

Bob, whose mailbox was full at the time, only receives that mail 2
years later, but is excited to try it out! They run the command,
only to realise that nicehub.com has decided to delete all built
images for free users…

“I’ll just rebuild it myself, then!”. But Bob opens the Dockerfile,
only to discover the following first two lines:

FROM ubuntu@latest

RUN apt-get update && apt-get upgrade

The Docker example

Alice uses a Docker image hosted on nicehub.com for their
research, and tells Bob that if they want to reproduce it, they can
just do docker pull cool-research and start using it as
well.

Bob, whose mailbox was full at the time, only receives that mail 2
years later, but is excited to try it out! They run the command,
only to realise that nicehub.com has decided to delete all built
images for free users…

“I’ll just rebuild it myself, then!”. But Bob opens the Dockerfile,
only to discover the following first two lines:

FROM ubuntu@latest

RUN apt-get update && apt-get upgrade

The Docker example

Alice uses a Docker image hosted on nicehub.com for their
research, and tells Bob that if they want to reproduce it, they can
just do docker pull cool-research and start using it as
well.

Bob, whose mailbox was full at the time, only receives that mail 2
years later, but is excited to try it out! They run the command,
only to realise that nicehub.com has decided to delete all built
images for free users…

“I’ll just rebuild it myself, then!”. But Bob opens the Dockerfile,
only to discover the following first two lines:

FROM ubuntu@latest

RUN apt-get update && apt-get upgrade

We follow a strict protocol!

I Isolate builds from the rest of the system (not unlike Docker!);

I But also from the network (unlike Docker!);

I Only sources whose hash we know beforehand can be fetched
from the network;

I Patch out unwanted behavior from underlying build tools:
“Why does build system X embed the prime factors of the
current date in the resulting binary???” and other fun things.

We follow a strict protocol!

I Isolate builds from the rest of the system (not unlike Docker!);

I But also from the network (unlike Docker!);

I Only sources whose hash we know beforehand can be fetched
from the network;

I Patch out unwanted behavior from underlying build tools:
“Why does build system X embed the prime factors of the
current date in the resulting binary???” and other fun things.

We follow a strict protocol!

I Isolate builds from the rest of the system (not unlike Docker!);

I But also from the network (unlike Docker!);

I Only sources whose hash we know beforehand can be fetched
from the network;

I Patch out unwanted behavior from underlying build tools:
“Why does build system X embed the prime factors of the
current date in the resulting binary???” and other fun things.

We follow a strict protocol!

I Isolate builds from the rest of the system (not unlike Docker!);

I But also from the network (unlike Docker!);

I Only sources whose hash we know beforehand can be fetched
from the network;

I Patch out unwanted behavior from underlying build tools:
“Why does build system X embed the prime factors of the
current date in the resulting binary???” and other fun things.

We follow a strict protocol!

I Isolate builds from the rest of the system (not unlike Docker!);

I But also from the network (unlike Docker!);

I Only sources whose hash we know beforehand can be fetched
from the network;

I Patch out unwanted behavior from underlying build tools:
“Why does build system X embed the prime factors of the
current date in the resulting binary???” and other fun things.

Making everything reproducible is a herculean effort. However,
Guix has tools to help us along the way:

$ guix build --check --rounds=5 --no-substitutes

--no-grafts libyaml

[...]

successfully built /gnu/store/6c6rs67wf0jwqnwqm821vrmzr7x7imh8-

libyaml-0.2.5.drv

You can also challenge substitute servers to reproducibility duels
with guix challenge.

Making everything reproducible is a herculean effort. However,
Guix has tools to help us along the way:

$ guix build --check --rounds=5 --no-substitutes

--no-grafts libyaml

[...]

successfully built /gnu/store/6c6rs67wf0jwqnwqm821vrmzr7x7imh8-

libyaml-0.2.5.drv

You can also challenge substitute servers to reproducibility duels
with guix challenge.

Guix, unlike language-specific package managers, takes care of the
full stack of dependencies.

Example: Stack claims that its main design point is reproducible
builds1. It also manages your Haskell toolchain. But where do
those Haskell toolchain binaries come from, and how do they work?

1https://docs.haskellstack.org/en/stable/GUIDE/

https://docs.haskellstack.org/en/stable/GUIDE/

The same can be said for external dependencies: what if you need
bindings to a C library? You want all the software to be managed
by one tool.

What about when sources disappear? Are we out of luck?

I Guix can download sources from SWH if upstream’s
unavailable;

I Guix queues packages’ sources for inclusion into SWH.

What about when sources disappear? Are we out of luck?

I Guix can download sources from SWH if upstream’s
unavailable;

I Guix queues packages’ sources for inclusion into SWH.

Development environments

Guix doesn’t install your software in e. g. /bin, just makes it
available by pointing to things in the store.

This also means we can do that temporarily! Suppose I want to
build an OCaml program once, I can just do:

$ guix shell ocaml -- ocamlopt hello.ml -o hello

[...]

$./hello

Development environments

Guix doesn’t install your software in e. g. /bin, just makes it
available by pointing to things in the store.

This also means we can do that temporarily! Suppose I want to
build an OCaml program once, I can just do:

$ guix shell ocaml -- ocamlopt hello.ml -o hello

[...]

$./hello

For more serious projects, you can list the dependencies in a
manifest.scm file, and run

$ guix shell -m manifest.scm

You can even distribute that file with your project for others to use!

For more serious projects, you can list the dependencies in a
manifest.scm file, and run

$ guix shell -m manifest.scm

You can even distribute that file with your project for others to use!

Going back in time

Guix is rolling-release: packages are updated as we go along. How
can we recover environments used in the past?

$ guix describe
Generation 75 Oct 31 2023 10:25:56 (current)

guix c089537
repository URL: https://git.savannah.gnu.org/git/guix.git
branch: master
commit: c0895371c5759c7d9edb330774e90f192cc4cf2c

Guix can describe itself, and you can also ask Guix to use an older
version of itself to run some commands:

$ guix describe -f channels > channels.scm

[some time later]

$ guix time-machine -C channels.scm -- shell ocaml

Going back in time

Guix is rolling-release: packages are updated as we go along. How
can we recover environments used in the past?
$ guix describe
Generation 75 Oct 31 2023 10:25:56 (current)
guix c089537

repository URL: https://git.savannah.gnu.org/git/guix.git
branch: master
commit: c0895371c5759c7d9edb330774e90f192cc4cf2c

Guix can describe itself, and you can also ask Guix to use an older
version of itself to run some commands:

$ guix describe -f channels > channels.scm

[some time later]

$ guix time-machine -C channels.scm -- shell ocaml

Going back in time

Guix is rolling-release: packages are updated as we go along. How
can we recover environments used in the past?
$ guix describe
Generation 75 Oct 31 2023 10:25:56 (current)
guix c089537

repository URL: https://git.savannah.gnu.org/git/guix.git
branch: master
commit: c0895371c5759c7d9edb330774e90f192cc4cf2c

Guix can describe itself, and you can also ask Guix to use an older
version of itself to run some commands:

$ guix describe -f channels > channels.scm

[some time later]

$ guix time-machine -C channels.scm -- shell ocaml

Sharing the channels.scm and manifest.scm files lets
anyone reproduce your environment with the magic

$ guix time-machine -C channels.scm

-- shell -m manifest.scm

Exporting environments

What if Alice and Bob are working together, but Bob doesn’t use
Guix (yet)?

Alice can send a pack containing their whole computing
environment with guix pack, for use on any other Linux system
(even WSL!).

$ guix pack -RR -S /bin=bin -S /etc=etc

emacs emacs-agda2-mode agda agda-cubical

gives an archive with everything needed to Cubical Agda in Emacs,
by extracting it anywhere!

Exporting environments

What if Alice and Bob are working together, but Bob doesn’t use
Guix (yet)?

Alice can send a pack containing their whole computing
environment with guix pack, for use on any other Linux system
(even WSL!).

$ guix pack -RR -S /bin=bin -S /etc=etc

emacs emacs-agda2-mode agda agda-cubical

gives an archive with everything needed to Cubical Agda in Emacs,
by extracting it anywhere!

Exporting environments

What if Alice and Bob are working together, but Bob doesn’t use
Guix (yet)?

Alice can send a pack containing their whole computing
environment with guix pack, for use on any other Linux system
(even WSL!).

$ guix pack -RR -S /bin=bin -S /etc=etc

emacs emacs-agda2-mode agda agda-cubical

gives an archive with everything needed to Cubical Agda in Emacs,
by extracting it anywhere!

One tool to rule them all: we can also output Docker images,
RPMs, DEBs.

This lets you run Guix-built software on e.g. clusters without Guix.

One tool to rule them all: we can also output Docker images,
RPMs, DEBs.

This lets you run Guix-built software on e.g. clusters without Guix.

One can also inspect dependency graphs with guix graph.

Optimizations and Reproducibility

Adding architecture-specific optimizations might endanger
reproducibility.

In Guix, optimizations are part of the recipe, thus a change of
optimizations builds a different version of the package, in a
separate store path.

$ guix build --tune=skylake openblas

You can also replace some dependencies by optimized libraries with
a simple package transformation:

$ guix build --with-input=gmp=my-faster-gmp openblas

Optimizations and Reproducibility

Adding architecture-specific optimizations might endanger
reproducibility.

In Guix, optimizations are part of the recipe, thus a change of
optimizations builds a different version of the package, in a
separate store path.

$ guix build --tune=skylake openblas

You can also replace some dependencies by optimized libraries with
a simple package transformation:

$ guix build --with-input=gmp=my-faster-gmp openblas

Optimizations and Reproducibility

Adding architecture-specific optimizations might endanger
reproducibility.

In Guix, optimizations are part of the recipe, thus a change of
optimizations builds a different version of the package, in a
separate store path.

$ guix build --tune=skylake openblas

You can also replace some dependencies by optimized libraries with
a simple package transformation:

$ guix build --with-input=gmp=my-faster-gmp openblas

Guix as a system

Guix has a complete set of Linux packages.

Next logical step: a Linux distribution!

Guix System takes the functional POV to a whole new level:
declarative system configuration.

Guix as a system

Guix has a complete set of Linux packages.

Next logical step: a Linux distribution!

Guix System takes the functional POV to a whole new level:
declarative system configuration.

(operating-system
(host-name "komputilo")
(timezone "Europe/Berlin")
(locale "en_US.utf8")
(bootloader ...)
(file-systems ...)
(users ...)
(packages (cons screen %base-packages))
(services ...))

system instantiation

guix system

Guix System can be used to configure:

I servers;

I personal machines;

I VMs;

I ISO images.

$ guix system image -f qcow2 config.scm

produces a QCOW2 image of some configuration!

While this might be interesting for cluster administrators, once you
get enamored with Guix you’ll want to try it out!

Guix System can be used to configure:

I servers;

I personal machines;

I VMs;

I ISO images.

$ guix system image -f qcow2 config.scm

produces a QCOW2 image of some configuration!

While this might be interesting for cluster administrators, once you
get enamored with Guix you’ll want to try it out!

Guix System can be used to configure:

I servers;

I personal machines;

I VMs;

I ISO images.

$ guix system image -f qcow2 config.scm

produces a QCOW2 image of some configuration!

While this might be interesting for cluster administrators, once you
get enamored with Guix you’ll want to try it out!

Extensibility

Guix itself is written in Scheme, a Lisp dialect.

Everything is accessible and extensible by your own scripts!

Tuning packages to your specific needs can go from a simple

$ guix install --with-branch=guile=main cuirass

to writing a new package definition
(package/inherit flameshot

(arguments
(substitute-keyword-arguments (package-arguments flameshot)

((#:configure-flags flags #~('()))
#~(cons* "-DUSE_WAYLAND_CLIPBOARD=ON"

#$@flags))))
(inputs
(modify-inputs (package-inputs flameshot)

(prepend qtwayland-5
(@ (gnu packages kde-frameworks) kguiaddons)))))

Extensibility

Guix itself is written in Scheme, a Lisp dialect.

Everything is accessible and extensible by your own scripts!

Tuning packages to your specific needs can go from a simple

$ guix install --with-branch=guile=main cuirass

to writing a new package definition
(package/inherit flameshot

(arguments
(substitute-keyword-arguments (package-arguments flameshot)

((#:configure-flags flags #~('()))
#~(cons* "-DUSE_WAYLAND_CLIPBOARD=ON"

#$@flags))))
(inputs
(modify-inputs (package-inputs flameshot)

(prepend qtwayland-5
(@ (gnu packages kde-frameworks) kguiaddons)))))

Extensibility

Guix itself is written in Scheme, a Lisp dialect.

Everything is accessible and extensible by your own scripts!

Tuning packages to your specific needs can go from a simple

$ guix install --with-branch=guile=main cuirass

to writing a new package definition
(package/inherit flameshot
(arguments
(substitute-keyword-arguments (package-arguments flameshot)
((#:configure-flags flags #~('()))
#~(cons* "-DUSE_WAYLAND_CLIPBOARD=ON"

#$@flags))))
(inputs
(modify-inputs (package-inputs flameshot)
(prepend qtwayland-5

(@ (gnu packages kde-frameworks) kguiaddons)))))

Need a lot of packages that are not yet in Guix? Writing all of
their definitions could take time...

We have automatic importers!

$ guix import pypi b4

(package
(name "python-b4")
(version "0.12.4")
(source
(origin

(method url-fetch)
(uri (pypi-uri "b4" version))
(sha256
(base32 "03gxjnch08kzi33kqarr9a43pmzqaykk69kb09pdsk3dv2v8nycz"))))

(build-system pyproject-build-system)
(propagated-inputs (list python-dkimpy python-dnspython

python-git-filter-repo python-patatt
python-requests))

(home-page "https://git.kernel.org/pub/scm/utils/b4/b4.git/tree/README.rst")
(synopsis "A tool to work with public-inbox and patch archives")
(description
"This package provides a tool to work with public-inbox and patch archives")
(license #f))

Need a lot of packages that are not yet in Guix? Writing all of
their definitions could take time...

We have automatic importers!

$ guix import pypi b4

(package
(name "python-b4")
(version "0.12.4")
(source
(origin

(method url-fetch)
(uri (pypi-uri "b4" version))
(sha256
(base32 "03gxjnch08kzi33kqarr9a43pmzqaykk69kb09pdsk3dv2v8nycz"))))

(build-system pyproject-build-system)
(propagated-inputs (list python-dkimpy python-dnspython

python-git-filter-repo python-patatt
python-requests))

(home-page "https://git.kernel.org/pub/scm/utils/b4/b4.git/tree/README.rst")
(synopsis "A tool to work with public-inbox and patch archives")
(description
"This package provides a tool to work with public-inbox and patch archives")
(license #f))

The chicken-and-egg problem

Guix also strives to be bootstrappable: we should be able to build
compilers from source!

Example: Rust

Officially,
· · · → Rust → Rust → Rust → · · ·

We need to break the cycle! We use mrustc for an old version of
Rust.

The chicken-and-egg problem

Guix also strives to be bootstrappable: we should be able to build
compilers from source!

Example: Rust

Officially,
· · · → Rust → Rust → Rust → · · ·

We need to break the cycle! We use mrustc for an old version of
Rust.

The chicken-and-egg problem

Guix also strives to be bootstrappable: we should be able to build
compilers from source!

Example: Rust

Officially,
· · · → Rust → Rust → Rust → · · ·

We need to break the cycle! We use mrustc for an old version of
Rust.

Guix now features the full-source bootstrap for the x86_64
architecture, which is the same problem but for the base C
compiler.

See Janneke’s blog post The Full-Source Bootstrap: Building from
source all the way down, as well as the Bootstrappable Builds
project!

Guix is also an excellent manual, available both in HTML and Info
formats, and cozy CLI!

Last but not least, Guix is also an incredibly nice and welcoming
community, which you can meet over on IRC, over mails or here
(for those who could attend)!

Guix is also an excellent manual, available both in HTML and Info
formats, and cozy CLI!

Last but not least, Guix is also an incredibly nice and welcoming
community, which you can meet over on IRC, over mails or here
(for those who could attend)!

Thank you for your attention. Any questions?

