
How to setup continuous integration (CI) in your Gitlab
projects, another step towards software reproducibility

Franck Pérignon

Workshop on Reproducible Software Environments for Research and
High-Performance Computing - November 8-10 2023

This work is licensed under CC BY-NC-SA 4.0.

What are we going to talk about today?

• Focus on (but things work for other similar tools)
I assume that everybody in this room is quite familiar with Gitlab (basics)

and that Git is your everydays’friend.

Right ?
• Continuous Integration (CI) and Continuous Delivery (CD)

• Take the opportunity to speak about some other “advanced” features of Gitlab
(merge-requests, releases, API, ...) ask if you want some details!

What are we going to talk about today?

• Focus on (but things work for other similar tools)
I assume that everybody in this room is quite familiar with Gitlab (basics)

and that Git is your everydays’friend.

Right ?
• Continuous Integration (CI) and Continuous Delivery (CD)

• Take the opportunity to speak about some other “advanced” features of Gitlab
(merge-requests, releases, API, ...) ask if you want some details!

What are we going to talk about today?

• Focus on (but things work for other similar tools)
I assume that everybody in this room is quite familiar with Gitlab (basics)

and that Git is your everydays’friend.

Right ?
• Continuous Integration (CI) and Continuous Delivery (CD)
• Take the opportunity to speak about some other “advanced” features of Gitlab

(merge-requests, releases, API, ...) ask if you want some details!
Specifically in the context of reproducibility, software development and guix obviously

How ?

Round trips between ...
• This presentation

• An introduction about CI/CD concepts and vocabulary
• Focuses on some specific topics (e.g. Registries, workflow ...)

• Some real demos inside a Gitlab project

How ?

Round trips between ...
• This presentation

• An introduction about CI/CD concepts and vocabulary
• Focuses on some specific topics (e.g. Registries, workflow ...)

• Some real demos inside a Gitlab project

Materials

Your entry point, a Gitlab group:
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research
or this page:
https:
//repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start

• These slides
• A demo project: repro4research/demos/ci-montpellier (empty for now) ...
• A place to experiment: repro4research/sandbox group

Feel free to do anything in this group, except removing someone else’s work !
And if you’re lost, too tired or run out of time ...

Homework: all the projects in the group repro4research/Materials and Demos,
tutorials including everything we’re going to work on today, detailed and explained

https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research
https://repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start
https://repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos/ci-montpellier
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/sandbox
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos

Materials

Your entry point, a Gitlab group:
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research
or this page:
https:
//repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start
• These slides
• A demo project: repro4research/demos/ci-montpellier (empty for now) ...
• A place to experiment: repro4research/sandbox group

Feel free to do anything in this group, except removing someone else’s work !

And if you’re lost, too tired or run out of time ...
Homework: all the projects in the group repro4research/Materials and Demos,

tutorials including everything we’re going to work on today, detailed and explained

https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research
https://repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start
https://repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos/ci-montpellier
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/sandbox
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos

Materials

Your entry point, a Gitlab group:
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research
or this page:
https:
//repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start
• These slides
• A demo project: repro4research/demos/ci-montpellier (empty for now) ...
• A place to experiment: repro4research/sandbox group

Feel free to do anything in this group, except removing someone else’s work !
And if you’re lost, too tired or run out of time ...

Homework: all the projects in the group repro4research/Materials and Demos,
tutorials including everything we’re going to work on today, detailed and explained

https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research
https://repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start
https://repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos/ci-montpellier
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/sandbox
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos

Let’s get started ...

Once again, I assume that
• everybody in this room is quite familiar with Gitlab (basics)
• Git is your everydays’friend
• you are comfortable with CLI in a Terminal
• Docker ?
• You are registered on gricad-gitlab and have access to the forementioned group

repro4research

What will you take away today?

• How to setup CI in a gitlab project.
• Some tips and advices (hopefully good?) to write your CI scripts.
• Some examples, ready to use and easy to reproduce when back at home (simple

and more advanced).
• An overview and some examples of interesting and useful Gitlab features.
• A short introduction on containers, Docker and friends. Not a full understanding

but the keys to understand and to use it.
• Headache?

Let’s start with some use cases
Objective: build and publish a website

No CI, no Gitlab

Let’s start with some use cases
Objective: build and publish a website

Gitlab and CI

Continuous Integration (CI)

A devops tool

Mostly dedicated to people working on softwares

but
(quite) easy to use, fits with many usages

Concept : practice of
systematically and automatically checking the impact of any modification to the
sources on operation, performance and so on

• A Gitlab project
• A bunch of scripts
• Any push leads to the build, install, test ... of the project
• A report is generated and published

Continuous Integration (CI)

A devops tool

Mostly dedicated to people working on softwares but
(quite) easy to use, fits with many usages

Concept : practice of associating with each modification to the sources a series of
operations that will be carried out automatically

• Build and publish website
• Build (pdf) documents (markdown, latex ...)
• Deploy: Shiny (R) or Voila (Python)
• ...

Continuous Delivery (CD)

Concept : practice to automate the infrastructure provisioning and application release
process.
Next step after CI
• Make the software ready for production
• Deploy the code to production environment

Why should you use CI/CD?

• Makes collaboration between developers easier
• Identify and fix errors and issues more easily and more rapidly
• Ensures that changes in the code or new features do not lead to regression
• Cleaner, more stable, more portable code
• Anticipate, plan and test different environments (debug/release, different OS,

differents parameters ...)
• Delivery and deployment: ready-to-use Docker-like images (Docker, Singularity ...)
• Frees up time for developers and reduce time-to-release or time-to-new-feature

Happier developers and users !
A fundamental tool for software quality and reproducibility

Why should you use CI/CD?

• Makes collaboration between developers easier
• Identify and fix errors and issues more easily and more rapidly
• Ensures that changes in the code or new features do not lead to regression
• Cleaner, more stable, more portable code
• Anticipate, plan and test different environments (debug/release, different OS,

differents parameters ...)
• Delivery and deployment: ready-to-use Docker-like images (Docker, Singularity ...)
• Frees up time for developers and reduce time-to-release or time-to-new-feature

Happier developers and users !
A fundamental tool for software quality and reproducibility

CI - What and How?

Job : a sequence of operations to be executed (configure, build ...)
• Each job is run independently of the others
• Each job has its own ’context’ of execution

CI - What and How?

The Runner : a host in charge of the execution of the jobs (through an executor , e.g.
Docker or shell)

CI - What and How?

The runner keeps contact with the Gitlab server and detect every action in the project
(git push)

Step by step CI setup

On , a powerful tool: gitlab-ci
https://docs.gitlab.com/ee/ci/

Setup?
1 Create a .gitlab-ci.yml at the root of the Gitlab project repository

• CI is on!
• This file lists all tasks that must be executed (the jobs!): what, where, in which

context ...

2 Define and register runners : hosts for the jobs
3 Describe (yaml) the jobs in the file .gitlab-ci.yml

https://docs.gitlab.com/ee/ci/

Step by step CI setup

On , a powerful tool: gitlab-ci
https://docs.gitlab.com/ee/ci/

Setup?
1 Create a .gitlab-ci.yml at the root of the Gitlab project repository

• CI is on!
• This file lists all tasks that must be executed (the jobs!): what, where, in which

context ...
2 Define and register runners : hosts for the jobs

3 Describe (yaml) the jobs in the file .gitlab-ci.yml

https://docs.gitlab.com/ee/ci/

Step by step CI setup

On , a powerful tool: gitlab-ci
https://docs.gitlab.com/ee/ci/

Setup?
1 Create a .gitlab-ci.yml at the root of the Gitlab project repository

• CI is on!
• This file lists all tasks that must be executed (the jobs!): what, where, in which

context ...
2 Define and register runners : hosts for the jobs
3 Describe (yaml) the jobs in the file .gitlab-ci.yml

Advice: many templates can be found. Get inspired, copy and paste are your friends.

https://docs.gitlab.com/ee/ci/

Vocabulary

• job : a sequence of actions to be executed in some pre-defined context, on a runner
• Each job is run independently of the others
• Everything is removed when the job finishes but the artifacts

• artifacts : some directories and files to be kept and transfered between jobs.
Intermediate build results

• runner : some machine, hosting and executing a job
• executor : used to run your job on the runner (shell, Docker, ...)
• pipeline : a sequence of (possibly dependant) jobs

Each pipeline corresponds to a single commit
• stage : of the pipeline, may contains several jobs, parallel execution

Let’s start the demo!

• The project: https://gricad-gitlab.univ-grenoble-alpes.fr/
repro4research/demos/ci-montpellier

• First step: grant access to all attendees of the tutorial → Gitlab API

https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos/ci-montpellier
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos/ci-montpellier

A quick word about Gitlab API

A tool to interact with the platform, to automate some operations.

A possible way to ”talk” to the API: python-gitlab package
• Python scripts to control (from your laptop) and automate actions inside your

projects
• Pre-requisite: have a personnal token

Gitlab doc - Personnal token

Demo Project Demos/Gitlab API, you’ll learn to
1 create a personnal access token,
2 use a script to register everybody into the group repro4research/Demos

https://python-gitlab.readthedocs.io/en/stable/index.html
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos/gitlab-api
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos

A first simple job

my_job:
script:
- ls
- whoami
- uname -a
- source scripts/make_something.sh

• A (new) language, yaml
• A name: my_job, could be anything
• Some instructions to be executed:

keyword script
as you would execute them in your
Terminal.

Demos, let’s see
• The pipeline editor and the Web IDE
• The content of the Build Menu
• What’s happening when a job is launched

One step further ...

Demos: build and make available a pdf file. Let’s see
• Artifacts
• Image keyword and Docker executor

A few words about

https://www.docker.com/
An opensource platform to create, deploy and manage virtualised application containers
on an operating system.

Image: a ”package” which contains everything needed to run our application
Container: lightweight execution environment, alternative to virtual machines
The container is built/started from the image

https://www.docker.com/

A few words about

https://www.docker.com/
An opensource platform to create, deploy and manage virtualised application containers
on an operating system.

Image: a ”package” which contains everything needed to run our application
Container: lightweight execution environment, alternative to virtual machines
The container is built/started from the image

https://www.docker.com/

In practice:
• run applications/services (python, g++, R, latex ...)
• in an environment of your choice (within certain limits) on the machine of your

choice.
For instance, on my Mac laptop, I can launch a ’linux ubuntu’ session with the command

docker run -ti ubuntu
or debian
docker run -ti debian:latest
or ...

A container (an ”instance” of the image) from an image (the model, ubuntu or debian
in our case) on which I can run linux commands, compile code and so on.

What’s the point?
• Access to a wide range of systems and tools potentially unavailable on your OS
• Easy to reproduce users environments
• Docker is available as an executor for gitlab-ci
• You can use the CI to create your own images and save them in a Gitlab project

(gitlab registries, later, be patient).
An essential tool to ensure (more or less) reproducible environments

Docker executor for Gitlab CI

Registries : a set of downloadable images

Docker executor for Gitlab CI

Container: an isolated execution context for each job

Build and publish web pages - Gitlab-pages

A tool to automatically publish a static web site associated with your project
• Private or public pages
• Publication and hosting delegated to Gitlab
• Doc : https://about.gitlab.com/features/pages/

How?
1 Choose a modern site generators (e.g. Pelican, Sphinx, Mkdocs …, more here)

A tool able to generate html files
2 Save sources in a gitlab project
3 Write a job named ”pages”

https://about.gitlab.com/features/pages/
https://about.gitlab.com/blog/2016/06/17/ssg-overview-gitlab-pages-part-3-examples-ci

Gitlab Pages demo

Demos, let’s see
• Stage
• Pipeline
• Pages
• Jobs dependencies

A complete project with pdf builder and gitlab-pages

https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos/ci-example-basics

Control the CI: rules, conditions and tags

CI: easy to setup. You should pay attention to the
ecological footprint and resource consumption

Best practice: think, and add rules to run only what is really necessary

Control CI is quite easy, with either:
• Commit messages

e.g.: do not execute CI for every commit → add [skip CI] in the commit message
• Rules in yaml

e.g.: a reduced pipeline for devel. branches (and the whole stuff for main or
releases), manual control of jobs ...

Demos: let’s see ”when” and ”rules” keywords

Control the CI: rules, conditions and tags

CI: easy to setup. You should pay attention to the
ecological footprint and resource consumption

Best practice: think, and add rules to run only what is really necessary

Control CI is quite easy, with either:
• Commit messages

e.g.: do not execute CI for every commit → add [skip CI] in the commit message
• Rules in yaml

e.g.: a reduced pipeline for devel. branches (and the whole stuff for main or
releases), manual control of jobs ...

Demos: let’s see ”when” and ”rules” keywords

Back to the runners

Runner: a host (computer, virtual, whatever ...) to collect and run CI tasks.

On , either:
• shared runners available (depends on the platform) for all projects

• self-managed, private runners , linked to a single project or group
could be any machine at your disposal (laptop, server, virtual machine ...)
could be isolated in a private network. It just needs to be able to ping (http)

the gitlab server and to clone a project.

Back to the runners

Runner: a host (computer, virtual, whatever ...) to collect and run CI tasks.

On , either:
• shared runners available (depends on the platform) for all projects
• self-managed, private runners , linked to a single project or group

could be any machine at your disposal (laptop, server, virtual machine ...)
could be isolated in a private network. It just needs to be able to ping (http)

the gitlab server and to clone a project.

Back to the runners

Runner: a host (computer, virtual, whatever ...) to collect and run CI tasks.

On , either:
• shared runners available (depends on the platform) for all projects
• self-managed, private runners , linked to a single project or group

could be any machine at your disposal (laptop, server, virtual machine ...)
could be isolated in a private network. It just needs to be able to ping (http)

the gitlab server and to clone a project.
Where to see/find them?
• Build/runners menu (group)
• Settings/CI CD menu (group)

Several runners may be connected to a single group or project

Git push ⇒ each job is ”taken” by a runner (tip: use tags to control runner scope)

On the runner
• Creation of a ’context’ (executor ...)
• Clone the project into the ’context’ and execute the required operations (job)
• Send a report to the project owning the job

Artifacts : files or directories, results of the job, that must be kept (for some time)
• Saved on the Gitlab server. Pay attention to the disk memory footprint

• Set ’expiry date’
• Save only what is required

• Possibly transfered between jobs

How to declare/install a runner?

1 Find a host and install gitlab-runner (and Docker)
Standard and easy to install - Example: gitlab runner for ubuntu/debian

2 Ask for a new runner in the group or the project (Gitlab web page)
• Project: Settings →CI/CD →New project runner
• Group: Build →Runner →New group runner

3 Register the runner with the project or group (Command line, on the runner)
setup communication between the runner and the gitlab server

gitlab-runner register \
--url https://gricad-gitlab.univ-grenoble-alpes.fr \
--token <SOME-TOKEN>

https://docs.gitlab.com/runner/install/index.html
https://docs.gitlab.com/runner/install/linux-repository.html

How to declare/install a runner?

1 Find a host and install gitlab-runner (and Docker)
Standard and easy to install - Example: gitlab runner for ubuntu/debian

2 Ask for a new runner in the group or the project (Gitlab web page)
• Project: Settings →CI/CD →New project runner
• Group: Build →Runner →New group runner

3 Register the runner with the project or group (Command line, on the runner)
setup communication between the runner and the gitlab server

gitlab-runner register \
--url https://gricad-gitlab.univ-grenoble-alpes.fr \
--token <SOME-TOKEN>

https://docs.gitlab.com/runner/install/index.html
https://docs.gitlab.com/runner/install/linux-repository.html

How to declare/install a runner?

1 Find a host and install gitlab-runner (and Docker)
Standard and easy to install - Example: gitlab runner for ubuntu/debian

2 Ask for a new runner in the group or the project (Gitlab web page)
• Project: Settings →CI/CD →New project runner
• Group: Build →Runner →New group runner

3 Register the runner with the project or group (Command line, on the runner)
setup communication between the runner and the gitlab server

gitlab-runner register \
--url https://gricad-gitlab.univ-grenoble-alpes.fr \
--token <SOME-TOKEN>

https://docs.gitlab.com/runner/install/index.html
https://docs.gitlab.com/runner/install/linux-repository.html

Demos, let’s see
• Runners registration
• Runner tags
• Executors

What have we achieved so far?

A project with a .gitlab-ci.yml file. CI is on.
One or more runners available and ready
Basic keywords known and understood (image, artifacts, script, ...)

Demos: let’s turn to a ”real” software project
Step by step demo ...

CI in a software project - Complete example

https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos/ci-example-advanced

What have we achieved so far?

A project with a .gitlab-ci.yml file. CI is on.
One or more runners available and ready
Basic keywords known and understood (image, artifacts, script, ...)

Demos: let’s turn to a ”real” software project
Step by step demo ...

CI in a software project - Complete example

https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/demos/ci-example-advanced

Démo : CI/CD for a ”real” software environment

What do we need/want?
• Configure, build and test a software (cmake, make, make test)
• For differents OS (ubuntu, debian ...)
• For different configurations (Debug, release ...)
• Generate documentation and publish the software webpage
• Control and automate releases publications
• Collaborative work (dev and users)
• ...

Demos

A first pipeline

Configure, build and test a software for a given context

Demos, let’s see
• CI variables
• before script
• needs

A word about CI (predefined or not) variables

Some kind of environment variables to control the behavior of your jobs and pipelines,
among other things.
• A lot of predefined variables: e.g. CI_PROJECT_DIR . More: try “env” in your

jobs.
• Defined in your CI script (global or job level)

variables:
name: value

• Defined with the user interface of your group/project: Settings → CI/CD →
variables.
May be masked or protected.

Demos, let’s try to add other operating systems and to use CI variables

2 problems arise in the previous demo:
• annoying repetition
• before script not compatible with all OS, costly in time and resources

and rather useless: we don’t need to test apt or equivalent tools!

2 problems arise in the previous demo:
• annoying repetition

use templates!
• before script not compatible with all OS, costly in time and resources

and rather useless: we don’t need to test apt or equivalent tools!
build your own images!

CI templates

2 problems arise in the previous demo:
• annoying repetition

use templates!
• before script not compatible with all OS, costly in time and resources

and rather useless: we don’t need to test apt or equivalent tools!
build your own images!

Demos, let’s see
• templates
• variables
• reports in artifacts

Jobs to build Docker images and Gitlab registries

As mentioned before:
• before script not compatible with all OS, costly in time and resources

and rather useless: we don’t need to test apt or equivalent tools!
build your own images is the solution!

Demos, let’s see
• Kaniko and CI to build docker images
• Gitlab registries

A few words about git workflow
Workflow a method to organize your repository management
Why organize?
• Different people, different habits in different contexts
• A complicated even chaotic management, potentialy inefficient.
• Waste of time!

Enforce reproducibility!
Which workflow?
Many possibilities, but no single answer...
• Centralized workflow: everyone works on the same branch
• Git workflow
• GitHub flow
• OneFlow
• ...

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
https://guides.github.com/introduction/flow/
https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow

Gitlab, git, workflow, ... A few tips

1 Use issues to declare every problem,
new development, etc

2 Create a new branch (or fork) for
each new feature, release, bug
resolution, etc.

3 Use merge-requests and benefit from
the review process.

4 Synchronize your repository regularly
(pull/push). The longer a branch lives,
the harder it will be to merge ...

Control the CI workflow

Ok, you choose a git workflow, good. But how can you handle it properly with the CI?
Same behavior for all branches, for MR, ... ?

No!
• Add rules
• Use Workflow keyword: control when pipelines are created (among other things)

Demos, combine branch, MR and issues. Use a CI workflow and rules.

Let’s switch to Continuous Delivery

CI to configure, build, test our software
Able to switch between different contexts (OS, parameters ...)
Control the workflow (rules, ...)

More?
• Release
• Install the software and make it available
• Produce documentation ...

Make your software available with CI/CD

Demos
• CI/CD to deliver “ready-to-use” Docker images, with your software
• How to write into other projects registries

Prerequisite: a deploy token
How?
• Must be owner in a group or maintainer in a project
• Settings → repository → deploy token
• Use the token to feed CI_DEPLOY _USER and CI_DEPLOY _PASSWORD

variables

Release

Demos
• CI to produce a release of your software each time a new tag is created

Triggered jobs and cross projects

Demos

More?

• Gitlab, SWH and HAL
• Add a codemeta.json into your git repository to prepare the way for HAL

(https://codemeta.github.io/codemeta-generator/)
• ”Declare” your git repository to SWH

• CI with a guix image?

https://codemeta.github.io/codemeta-generator/

