
How to get started with Gitlab (and GIT), an essential tool for research
reproducibility ?

Tutorial session 1

Alizia Tarayoun

Thursday 9th November, 2023

University Grenoble Alpes, ISTerre

This work is licensed under CC BY-NC-SA 4.0.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

http://creativecommons.org/licenses/by-nc-sa/4.0/

What we will talk about...

"This tutorial, intended for a novice audience, aims you to get started with the gitlab forge and a versioning
system (git). We will see what is a forge and why it is today an essential tool for research reproducibility. At
the end of this tutorial you will know how to use the main tools offered by the forge as well as the basic git
commands to manage one or several project(s). Small demonstrations will be carried out from a simple one
to illustrate the git commands to a more advanced example working with several branches on a code
development project."

Objectives:

• understand what is (and what is not) a forge

• be convinced of its utility

• understand what is a version control system

• be autonomous for a (at least) basic usage

• be aware about some good practices

Reproducible software deployment for high-performance computing 1

Organization

• Our practice through gricad-gitlab platform

• 1h15 it is short...

• Need to manipulate, experimented

→ All participants present this morning are registered in this group :
https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/sandbox
Feel free to do anything in this group (except removing someone else’s work...)

Presentation (and more...) is available here: https://repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start/

And everything will be accessible afterwards !

Reproducible software deployment for high-performance computing 2

https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/sandbox
https://repro4research.gricad-pages.univ-grenoble-alpes.fr/demos/start/

Outline

What is a forge ? definition, usages and objectives

Introduction to the gricad-gitlab platform

What is a Version Control System (VCS) ?

Introduction to GIT

Basic view of how to collaborate together with the gricad-gitlab platform and GIT

Illustration through the SEISCOPE project

Conclusion

Supplementary materials

Reproducible software deployment for high-performance computing 3

Outline

What is a forge ? definition, usages and objectives

Introduction to the gricad-gitlab platform

What is a Version Control System (VCS) ?

Introduction to GIT

Basic view of how to collaborate together with the gricad-gitlab platform and GIT

Illustration through the SEISCOPE project

Conclusion

Supplementary materials

Reproducible software deployment for high-performance computing 3

What is a forge: Definition

That was before...

Reproducible software deployment for high-performance computing 4

What is a forge: Definition

Today...

→ Forges: Project management systems (of collaborative developments)

Principle :

• Bring together users with different profiles (researchers, engineers, developers, coordinators etc.)
around projects

• Provide a set of tools adapted to develop, manage, monitor, disseminate, promote projects

In practice :

• a website

• users (login) associated with projects

• configurable tools via the web interface

• different levels of rights on tools and projects (visibility, writing . . .)

Reproducible software deployment for high-performance computing 5

What is a forge: Definition

Today...

→ Forges: Project management systems (of collaborative developments)

Principle :

• Bring together users with different profiles (researchers, engineers, developers, coordinators etc.)
around projects

• Provide a set of tools adapted to develop, manage, monitor, disseminate, promote projects

In practice :

• a website

• users (login) associated with projects

• configurable tools via the web interface

• different levels of rights on tools and projects (visibility, writing . . .)

Reproducible software deployment for high-performance computing 5

What is a forge: Example of the gricad-gitlab platform (ESR Grenoble)

Reproducible software deployment for high-performance computing 6

What is a forge: Review (non-exhaustive) of available tools and functionalities

• Structuring : groups, sub-groups, projects and authenticated users
• possible collaborations with anyone
• fine management of access rights and utilization for all tools
• management of visibility of groups, projects, files

→ See demo1

• Planning, scheduling, task and problem manager (issues)
• Build communities (contributors, users, students ...)
• Follow, organize the team’s work
• Collect, log and track issues
• Manage user requests and responses, tickets
• Share information, exchange space, wiki

→ See demo1

Reproducible software deployment for high-performance computing 7

What is a forge: Review (non-exhaustive) of available tools and functionalities

• Structuring : groups, sub-groups, projects and authenticated users
• possible collaborations with anyone
• fine management of access rights and utilization for all tools
• management of visibility of groups, projects, files

→ See demo1

• Planning, scheduling, task and problem manager (issues)
• Build communities (contributors, users, students ...)
• Follow, organize the team’s work
• Collect, log and track issues
• Manage user requests and responses, tickets
• Share information, exchange space, wiki

→ See demo1

Reproducible software deployment for high-performance computing 7

What is a forge: Review (non-exhaustive) of available tools and functionalities

• Version Control System
Practice of keeping/maintaining all versions of a set of files.

• Centralize activity
• Archive and track changes, keep history, developments
• Allow/facilitate/manage contributions (merge-requests...)

→ See part dedicated on VCS section:vcs and GIT section:git in this tutorial

• Sharing, management of documents and files
• Backup (and therefore possible restoration), archiving
• Online edition

→ See demo2

Reproducible software deployment for high-performance computing 8

What is a forge: Review (non-exhaustive) of available tools and functionalities

• Version Control System
Practice of keeping/maintaining all versions of a set of files.

• Centralize activity
• Archive and track changes, keep history, developments
• Allow/facilitate/manage contributions (merge-requests...)

→ See part dedicated on VCS section:vcs and GIT section:git in this tutorial

• Sharing, management of documents and files
• Backup (and therefore possible restoration), archiving
• Online edition

→ See demo2

Reproducible software deployment for high-performance computing 8

What is a forge: Review (non-exhaustive) of available tools and functionalities

• CI/CD Continuous Integration and Deployment
Practice to check systematically and automatically the impact of any modification of sources.

• Allows you to create software from its source code (compilation, automatic testing, quality assurance,
distribution of deliverables)

• Production of broadcastable and usable versions
• Generation, storage and provision of images (ready-to-use code, notebooks, etc.), “container registries”

→ See Tutorial Session 2 - Advanced Gitlab - of F. Pérignon

Reproducible software deployment for high-performance computing 9

What is a forge: Review (non-exhaustive) of available tools and functionalities

• CI/CD Continuous Integration and Deployment
Practice to check systematically and automatically the impact of any modification of sources.

• Allows you to create software from its source code (compilation, automatic testing, quality assurance,
distribution of deliverables)

• Production of broadcastable and usable versions
• Generation, storage and provision of images (ready-to-use code, notebooks, etc.), “container registries”

→ See Tutorial Session 2 - Advanced Gitlab - of F. Pérignon

Reproducible software deployment for high-performance computing 9

What is a forge: Review (non-exhaustive) of available tools and functionalities

• Gitlab Pages : publication, hosting and maintenance of websites
• creation and deployment of websites
• production of documentation
• related to CI

→ See Tutorial Session 2 - Advanced Gitlab - of F. Pérignon

• Interaction with Software Heritage

→ See Presentation of B. Chauvet

For more details about general features, see https://about.gitlab.com/features/

Reproducible software deployment for high-performance computing 10

https://about.gitlab.com/features/

What is a forge: Review (non-exhaustive) of available tools and functionalities

• Gitlab Pages : publication, hosting and maintenance of websites
• creation and deployment of websites
• production of documentation
• related to CI

→ See Tutorial Session 2 - Advanced Gitlab - of F. Pérignon

• Interaction with Software Heritage

→ See Presentation of B. Chauvet

For more details about general features, see https://about.gitlab.com/features/

Reproducible software deployment for high-performance computing 10

https://about.gitlab.com/features/

What is a forge: Which usages ?

• Collaborations around codes developments (softwares, applications)
→ At the origin of forge creation
→ Became an indispensable tool and widely used by the software developer community

• Collaborative (or not) redaction of scientific paper, thesis manuscript etc.

• Teaching (courses, training material, etc.)

• Generation, publication and maintenance of websites

• Share space of files, data
"a forge is not a data repository like https://recherche.data.gouv.fr/fr, a NextCloud or DropBox
It is not intended to save large volume of data

• etc.

Reproducible software deployment for high-performance computing 11

https://recherche.data.gouv.fr/fr

What is a forge: Why use a forge ?

• access to all tools via a single web portal

• well-integrated tools, configurable for each project, relatively intuitive use

• does not require any prior installation

• multi-site, multi-user access
• a tool suitable for:

• varying degrees of participation: development, supervision, testing, distribution, etc.
• very different contexts of use: research, industrial collaboration, teaching, etc.

Reproducible software deployment for high-performance computing 12

What is a forge: Good practice and reproducibility

• Promote collaborative work, make life easier for everyone, collaborators AND users (present and future)
• Provide and promote quality, shareable and reusable products
• Be in a "reproducible research" approach

→ Grenoble Network around Reproducible Research :
https://reproducibility.gricad-pages.univ-grenoble-alpes.fr/web/

The forges are at the heart of these processes

Reproducible software deployment for high-performance computing 13

https://reproducibility.gricad-pages.univ-grenoble-alpes.fr/web/

What is a forge: Which forge(s) to use ?

The reference ≈ 73 millions users in 2021, 100 millions of projects, redeem by Microsoft in 2019.

Equivalent alternatives :

https://bitbucket.org
https://about.gitlab.com

Reproducible software deployment for high-performance computing 14

https://bitbucket.org
https://about.gitlab.com

What is a forge: Which forge(s) to use ?

External forges to ESR, commercial or community

• very functional

• integrate many tools

• few constraints

• widely used, stable, very regularly
updated and improved

• commercial, non-academic

• uncontrolled hosting
(RGPD respect, European regulations ?)

• sometimes payable

• indefinite availability period (Google code...)

Reproducible software deployment for high-performance computing 15

What is a forge: Which forge(s) to use ?

→ A good solution: the self-hosted "ESR" platforms (39 available forges 1 in structures or laboratories)

In practice

• The choice will depend on your project, the people involved, the habits of your community...
• Possible and relatively simple to use multiple platforms

• similar tools and uses
• simple to transfer project

1Forges de l’Enseignement supérieur et de la Recherche - Définition, usages, limitations rencontrées et analyse des besoins, D.
Le Berre, J.Y. Jeannas, R. Di Cosmo, F. Pellegrini, 2023, hal-04098702v2

Reproducible software deployment for high-performance computing 16

What is a forge: Which forge(s) to use ?

→ Today: focus on ...

• A software developed by Gitlab Inc company

• An "open source" free of charge distribution (Gitlab CE) and a payable proprietary version (Gitlab EE)
offering additional features

• Numerous deployments (websites) : self-hosted forges
• https://about.gitlab.com : Gitlab Inc forge
• 37 Gitlab instances recorded in the ESR

... and more particularly on the gricad-gitlab platform.

Reproducible software deployment for high-performance computing 17

https://about.gitlab.com/

Outline

What is a forge ? definition, usages and objectives

Introduction to the gricad-gitlab platform

What is a Version Control System (VCS) ?

Introduction to GIT

Basic view of how to collaborate together with the gricad-gitlab platform and GIT

Illustration through the SEISCOPE project

Conclusion

Supplementary materials

Reproducible software deployment for high-performance computing 17

The gricad-gitlab platform

For today’s demos we will use gricad-gitlab

• Platform created in 2017

• Academic platform intended for all establishments in the Grenoble "ESR" community.

• Hosted and administered by the UAR GRICAD

• Today: nearly 9,000 users, more than 14,000 projects, more than 2,500 groups

https://gricad-gitlab.univ-grenoble-alpes.fr

Reproducible software deployment for high-performance computing 18

https://gricad-gitlab.univ-grenoble-alpes.fr

First steps with gricad-gitlab

The basics for getting started with a gitlab-type platform:

• creation/management of a user account

• creation/management of projects and groups

• visibility and rights

Prerequisites ?

• A web browser, a connection

• And that’s all !

Reproducible software deployment for high-performance computing 19

First steps with gricad-gitlab: access and connection

Who : anyone !

How ?

• ESR Grenoble : agalan account ⇒ full access to all tools
Creation/Connection : tab LDAP UGA

• ‘external’ account, more limited ⇒ unauthorized creation of groups or personal projects
To create an account : link Register
Connection : tab Standard

Identification: a username and a unique email (impossible to have 2 accounts with the same email)

Reproducible software deployment for high-performance computing 20

First steps with gricad-gitlab: access and connection

Access link : https://gricad-gitlab.univ-grenoble-alpes.fr

→ Try it, connect !

Reproducible software deployment for high-performance computing 21

https://gricad-gitlab.univ-grenoble-alpes.fr

First steps with gricad-gitlab: access and connection

→ DEMO 1:

• Login (agalan vs external account)

• User Settings: profile

• User Settings: SSH Keys

• User Settings: Notifications

• Help

Access link : https://gricad-gitlab.univ-grenoble-alpes.fr

Reproducible software deployment for high-performance computing 22

https://gricad-gitlab.univ-grenoble-alpes.fr

First steps with gricad-gitlab: DEMO 1: Dashboard

• Account setup
• Access to projects and groups
• Todo-list, notifications ...

Reproducible software deployment for high-performance computing 23

First steps with gricad-gitlab: DEMO 1: Settings Menu

Recommended first steps :

• Profile : check/complete the different fields

• SSH keys : drop an ssh key (see supplementary materials ssh_key)

• Notifications : control the notification level
Visualize the different possibilities and set a default mode
(→ “disabled” to avoid unwanted sending of emails)

Reproducible software deployment for high-performance computing 24

First steps with gricad-gitlab: DEMO 1: where to find help

Reproducible software deployment for high-performance computing 25

First steps with gricad-gitlab: Groups

Defining as:

• Set of projects or subgroups

• Associated with a set of users

• Manage rights/permissions by default

Reproducible software deployment for high-performance computing 26

First steps with gricad-gitlab: Group creation

Information needed for creation:

• a name and description
• a level of visibility

• private: visible only to project members (who must therefore be added by the admin)
• internal: visible to any connected user (possibility of requesting to join)
• public: visible to anyone

Reproducible software deployment for high-performance computing 27

First steps with gricad-gitlab: Projects

A "space" for:

• host, save, share files

• manage a set of
participants, with
individually adjustable
rights

• manage/configure tools

Reproducible software deployment for high-performance computing 28

First steps with gricad-gitlab: Projects

→ DEMO 2:

• join the sandbox group

• create a project in sandbox

• manage rights/permissions

• operations directly on the platform (add files, edit, save modifications...)

Access link : https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/sandbox (need to be accepted)

Reproducible software deployment for high-performance computing 29

https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/sandbox

First steps with gricad-gitlab: DEMO 2: Create a project

": You will see the projects only if you registered before to this tutorial.
(recall: an external user can create project only in an already existing group)
If not, need to:
1- In the link Explore groups, need to search for "sandbox" associated with the "repro4research" group

2 - Ask to join the group with the link Request Access

Reproducible software deployment for high-performance computing 30

First steps with gricad-gitlab: DEMO 2: Create a project

Where? Menu Projects of the dashboard : projects list and tab New project

Reproducible software deployment for high-performance computing 31

First steps with gricad-gitlab: DEMO 2: Create a project

Information needed for creation:

• a location (namespace ≈ folder), a name, a description
• Your ‘username’, personal projects (thesis manuscript, forks etc.), (not available for external accounts)

https://gricad-gitlab.univ-grenoble-alpes.fr/your_login/project_name

• A group or a subgroup

https://gricad-gitlab.univ-grenoble-alpes.fr/group_name/project_name

• a level of visibility
• private: visible only to project members (who must therefore be added by the admin)
• internal: visible to any connected user (possibility of requesting to join the project)
• public: visible to anyone

"projects inherit group visibility: for example, a private group can only contain private projects

Reproducible software deployment for high-performance computing 32

First steps with gricad-gitlab: DEMO 2: Create a project

Roles and permissions:

Roles : guest, reporter, developper, maintainer, owner

Details : https://gricad-gitlab.univ-grenoble-alpes.fr/help/user/permissions

• Creator of a group or project: automatically “owner”

• "a user inherits his rights in a project from the group

• A user can be part of a project without belonging to the group

Reproducible software deployment for high-performance computing 33

https://gricad-gitlab.univ-grenoble-alpes.fr/help/user/permissions

First steps with gricad-gitlab: DEMO 2: Create a project

Editing directly on the platform:

• the web editor -> creation, loading of files, creation of branches, etc.

• Web IDE -> online management of all repository files

Reproducible software deployment for high-performance computing 34

First steps with gricad-gitlab: DEMO 2: Create a project

Editing on the platform and markdown:
Markdown is a very simple language to learn, read and write that allows to format text for a web page. On
Gitlab it is possible to use an extended version of Markdown (gitlab flavored markdown) to write comments,
issues, help files, etc. A bit of documentation:

• https://docs.gitlab.com/ee/user/markdown.html

• https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Advices/best practices :

• Learn the basics of Markdown

• At least one README.md per project
(summary description of the project, content, help, useful links, etc.)
→ better readability of your project !

• When a text file is edited with markdown syntax, it will be displayed formatted (and therefore more
readable and attractive)

Reproducible software deployment for high-performance computing 35

https://docs.gitlab.com/ee/user/markdown.html
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

First steps with gricad-gitlab: Group and Project: some more information

In terms of good practices:

• Take the time to correctly configure the list of members, their rights, roles, expiration dates of
participation, etc.

• To group managers: only add people who are likely to participate in all the group’s projects

• Organize projects into thematic groups (adds visibility)

• Pay attention to the naming of projects (impact on visibility, project reference)

Reproducible software deployment for high-performance computing 36

Outline

What is a forge ? definition, usages and objectives

Introduction to the gricad-gitlab platform

What is a Version Control System (VCS) ?

Introduction to GIT

Basic view of how to collaborate together with the gricad-gitlab platform and GIT

Illustration through the SEISCOPE project

Conclusion

Supplementary materials

Reproducible software deployment for high-performance computing 36

In which case ?

A project with participants who collaborate for instance...

Potential needs/issues:

• simultaneous work on the same files

• need to incorporate other people’s changes

• need to distribute to users an up-to-date version
of the files

• need to preserve history (for possible rollbacks)

• etc.

Reproducible software deployment for high-performance computing 37

Definition

→ Solution: Use a versioning system

A version control is a system that records changes to a file or set of files over time so that it is possible
to recall specific versions later

A tool which is at the heart of the forges, and which is their main interest !
Gitlab project ≈ directories and files (repository) + a built-in version manager

Reproducible software deployment for high-performance computing 38

Definition

Two main functions:

• allows simultaneous work of several people on a set of files:
• synchronization of changes, automatic merging of files
• detection and resolution (more or less automatic . . .) of conflicts

• a history management of the project:
• access to any archived version
• information about who made a change, when, where, why...
• automatic notifications to participants

In short, an essential tool !

Reproducible software deployment for high-performance computing 39

Which VCS to use ?

Different Version Control Systems (not exhaustive):

• subversion (svn, 2000): subversion.apache.org

• git (2005): git-scm.com

• mercurial (2005): mercurial.selenic.com

• bazaar (2005): bazaar.canonical.com

Today GIT overcome the others (see rhodecode.com), especially due to patforms such as github or gitlab.

Reproducible software deployment for high-performance computing 40

http://subversion.apache.org/
https://git-scm.com/
https://mercurial.selenic.com/
http://bazaar.canonical.com/en/
https://rhodecode.com/insights/version-control-systems-2016

Outline

What is a forge ? definition, usages and objectives

Introduction to the gricad-gitlab platform

What is a Version Control System (VCS) ?

Introduction to GIT

Basic view of how to collaborate together with the gricad-gitlab platform and GIT

Illustration through the SEISCOPE project

Conclusion

Supplementary materials

Reproducible software deployment for high-performance computing 40

GIT definition

GIT is a distributed version control system

• when check out, users fully mirror the repository, including its full
history

• every clone is really a full backup of all the data

• nearly every operation is local i.e. more possibility to work offline
(access to complete history, differences between commit etc.)

Two levels of work:

• local to each “repository” with the classic functionalities of a
version manager

• remote: with the possibility of synchronizing the repository with
other, called remote/distant

Reproducible software deployment for high-performance computing 41

A GIT project

• three main components of a GIT project:
- the repository (.git): data and meta-data
concerning all “versioned” directories and
files
- the working directory: or working tree,
files currently working on
- the staging area: or index, where commits
are prepared

→ Commit: state of a repository, a version, a
snapshot of all files that it is recorded

Components of a GIT project

Reproducible software deployment for high-performance computing 42

GIT: States of files

- untracked: on your working directory
- modified: the file is changed but not committed
- staged: a file has been marked to go into the next commit
- committed: the file is safely stored in the local database (i.e. the .git repository)
To get information about the state of all files in the working directory: $ git status

To staged files:
$ git add <filename> or $ git add -A
To commit files in the staged area:
$ git commit or

$ git commit -m "<message>"

Reproducible software deployment for high-performance computing 43

Git configuration

Before the practice...

Git is generally used via the command line (terminal, PowerShell).
The use is identical under Windows, mac or Linux:
$ git <command> <argument>

For an overview of the different commands: $ git help

To obtain the documentation for a specific command: $ git help <command>

→ Installation, see: https://git-scm.com/downloads

Reproducible software deployment for high-performance computing 44

https://git-scm.com/downloads

Git configuration

Mandatory settings necessary for the first use of git:

$ git config --global user.name "Alizia Tarayoun"

$ git config --global user.email "alizia.tarayoun@univ-grenoble-alpes.fr"

Optional options:
choose a default editor:
$ git config --global core.editor vim or

$ git config --global core.editor emacs
define aliases by editing the .gitconfig file:
$ git config --global alias.co checkout

→ Everything is saved in a .gitconfig file at the root of
your account. Example of a .gitconfig file

Reproducible software deployment for high-performance computing 45

A GIT project

→ DEMO 3:

• Create a git project in local

• Illustrate the different status

• Save modifications (i.e. commit)

• View history

• Go back to a specific version

Reproducible software deployment for high-performance computing 46

A GIT project: DEMO 3: create a repository

To use git, you first need a working directory, which will contain, among other things, the database and the
current version of your repository.
Creation (init) of an empty repository:
$ mkdir WorkingDir; cd WorkingDir

$ git init
Or copy (clone) an existing repository:
$ git clone <repo_address>

examples:

git clone /path/to/local_repo WorkingDir

git clone username@server:/path/to/repository WorkingDir
"repo_address" represents a “remote” repository: another directory on your machine, a git repository on
another server accessible via the network...

Reproducible software deployment for high-performance computing 47

A GIT project: DEMO 3: States of file

Simplified life cycle of a project will be as follows:

• Extraction from the database of a “snapshot” of the project, i.e. a version of all the files which will
constitute the working directory (git clone) or initialization of a local working directory (git init)

• Modification(s) of files in the working directory

• Staging (index) of these changes, which means that they are candidates for saving in the next version

• Validation (commit): creation of a new snapshot, saved in the database, from the index information

Reproducible software deployment for high-performance computing 48

Notion of branches

Nearly every VCS has some form of branching support. Branching means you diverge from the main line of
development and continue to do work without impacting the original branch.
In git the current default branch name is main.

Example of connections between branches

Reproducible software deployment for high-performance computing 49

Git: branches

Reminders of operating principles

Commit: a link (a pointer) to a snapshot of the state of all files. Git stacks commits one after the other
that builds the project history.

Reproducible software deployment for high-performance computing 50

Git: branches

Branch: a pointer to a particular commit + history

A default branch: main.

Possible extraction of any commit from the branch ⇒ access to the version of the files of this commit

Reproducible software deployment for high-performance computing 51

Git: branches

New branch: divergence from the main line (new functionality, bug fix...)

- To create a new branch:
$ git branch newtest

- Identification of the current branch:
the HEAD pointer

Reproducible software deployment for high-performance computing 52

Git: branches

To switch to an existing branch: $ git checkout newtest

"Note: you will not be able to change branch if there are modified files on your current branch (check with
$git status).
Solutions:

• Work on another “working directory” (potentially with git clone <url> -b <branch_name>
--single-branch)

• Use git stash (see supplementary materials git_stash)
Reproducible software deployment for high-performance computing 53

Git: branches

Independent evolution of the branches, until a possible merge...
To integrate a branch (source) into a branch (target):
Switch to target branch: $ git checkout main

Merge : $ git merge newtest

Reproducible software deployment for high-performance computing 54

Git: branches

Each branch can then continue to evolve independently...

Reproducible software deployment for high-performance computing 55

Git merge: manage conflicts

During the merge, everything does not necessarily always go very well... For instance if the same part of the
same file is changed differently in the two branches, Git won’t be able to merge them cleanly and end up
with a merge conflict.

(base) tarayoua@ist-156-58:∼$ git merge branch_merge
Auto-merging file_hello
CONFLICT (content): Merge conflict in file_hello
Automatic merge failed; fix conflicts and then commit the result.

git adds markers around conflict areas:

(base) tarayoua@ist-156-58:∼$ cat file_hello
<<<<<<< HEAD
bonjour
var=10.6789
=======
hello
var=9
>>>>>>> branch_merge
end file

Reproducible software deployment for high-performance computing 56

Git merge: manage conflicts

During the merge, everything does not necessarily always go very well...

−→To correct problems, need to:

• resolve conflict manually or with a dedicated tool ($ git mergetool)

• put the corrected files on the staged area

• validate the changes (i.e. commit)

Reproducible software deployment for high-performance computing 57

Git: branches

→ DEMO 4:

• create a new branch in the same repository

• merge branch

→ From now, work only in local.

Need to use a forge to work efficiently with
collaborators

Reproducible software deployment for high-performance computing 58

Outline

What is a forge ? definition, usages and objectives

Introduction to the gricad-gitlab platform

What is a Version Control System (VCS) ?

Introduction to GIT

Basic view of how to collaborate together with the gricad-gitlab platform and GIT

Illustration through the SEISCOPE project

Conclusion

Supplementary materials

Reproducible software deployment for high-performance computing 58

Remote repository, principle

Main steps:

• connection between repositories: add or copy (git clone) a remote repository

• developments in each repository (independently)

Reproducible software deployment for high-performance computing 59

Remote repository, principle

Main steps:

• connexion between repositories: add or copy (git clone) a remote repository
• developments in each repository (independently)
• integration of modifications from the remote repository (git pull)

• transfer from the local modifications into the remote repository (git push)

Reproducible software deployment for high-performance computing 60

Remote repository, principle

Main steps:

• connexion between repositories: add or copy (git clone) a remote repository

• developments in each repository (independently)

• integration of modifications from the remote repository (git pull)

• transfer of the local modifications into the remote (git push)

• push/pull from potential other users

Reproducible software deployment for high-performance computing 61

Remote repository, interaction with ssh or https

Two protocoles are available in order to "connect" the local to the remote repository and exchange files
between your machine and gitlab.

• "https": authentification by login and password

• "ssh": authentification with an ssh key (that needs to be added on the gitlab account profile)

Reproducible software deployment for high-performance computing 62

Working with a remote repository

→ DEMO 5:

• Connect the local repository to the remote one

• Interact with the remote repository (push/pull)

• Add other repository

link remote repository: a project in : https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/sandbox/

Reproducible software deployment for high-performance computing 63

https://gricad-gitlab.univ-grenoble-alpes.fr/repro4research/sandbox/

Working with a remote repository: DEMO 5

Recall on adding a remote repository

Case 1: from scratch
Creation of an empty repository
$ git init
Connection with a remote repo
$ git add remote <name_remote> <repository_address>

Case 2: copy
$ git clone git@gricad-gitlab.univ-grenoble-alpes.fr:pathproject/project.git myproject

automatic link with the remote repository, locally named ’origin’

Note: it is possible to create several remote repositories with the following command:
$ git init --bare <remote_name.git>

Reproducible software deployment for high-performance computing 64

Working with a remote repository: DEMO 5

Some useful commands working with remotes:

To list the current remotes:
$ git remote -v

You can refer to the remote repository by his name instead of the whole url.
To locally rename a remote repository:
$ git remote rename <current_name> <new_name>

To locally delete a reference to a remote (and all remote-tracking branches):
$ git remote rm <local_name>

Reproducible software deployment for high-performance computing 65

Working with a remote repository: DEMO 5

To update your working directory regarding the remote repository:
$ git pull <remote_repo_name> <branch_name>

Note: to avoid at every pull/push/merge to specify the name of the remote repository and the name of the
local branch, you can track a local branch by a remote branch (automatically done when cloning a project
for the main branch, the main branch tracks origin/main):
$ git branch --set-upstream-to <remote_repo_name/branch_name> <branch_name>

git pull = $ git fetch <remote_repo_name> +

$ git merge <remote_repo_name/current_branch_name>

To push your modifications on the remote repository:
$ git push <remote_repo_name> <branch_name>

Reproducible software deployment for high-performance computing 66

Working with a remote repository: DEMO 5: merge-requests

In terms of good practices for properly managing parallel developments (working on several simultaneous
branches) a good solution is to use Gitlab functionality of the merge-requests (pull requests under github).

Merge-request: submission of a request to merge one branch into another, which will in particular lead to a
review process by other developers
Fork: duplication of a project (and therefore copy of the git repository)

Reproducible software deployment for high-performance computing 67

Working with a remote repository: DEMO 5: merge-requests

Copy of the gitlab project to another namespace, Fork −→ creation of a new project.

Reproducible software deployment for high-performance computing 68

Working with a remote repository: DEMO 5: merge-requests

Submitting a merge request

Reproducible software deployment for high-performance computing 69

Working with a remote repository: DEMO 5: merge-requests

Review, until an acceptable and mergable solution (a commit) is obtained

Reproducible software deployment for high-performance computing 70

Working with a remote repository: DEMO 5: merge-requests

Merge of the fork branch to the main project, possible closure of the merge request

Reproducible software deployment for high-performance computing 71

Outline

What is a forge ? definition, usages and objectives

Introduction to the gricad-gitlab platform

What is a Version Control System (VCS) ?

Introduction to GIT

Basic view of how to collaborate together with the gricad-gitlab platform and GIT

Illustration through the SEISCOPE project

Conclusion

Supplementary materials

Reproducible software deployment for high-performance computing 71

Gricad-gitlab platform - Illustration of use

The SEISCOPE project
Develops and applies high-resolution geophysical imaging methods through seismic waveform inversion to
characterize subsurface/crustal physical properties.
2 main codes for 3D modeling and inversion:

• TOYxDAC_TIME: anisotropic visco-acoustic based on finite difference method (MPI+MPI+OpenMP)

• SEM46: anisotropic viscoelastic (and/or acoustic) based on spectral finite elements method
(MPI+MPI)

3 to 5 main contributors per code

→ need a forge (+ version control system)

• use for code development
example_code_SEM46

• use for collaborative redaction
example_publication

Reproducible software deployment for high-performance computing 72

https://gricad-gitlab.univ-grenoble-alpes.fr/SEISCOPE/CODES/ELASTIC/SEM46
https://gricad-gitlab.univ-grenoble-alpes.fr/SEISCOPE/ARTICLES/PUBLIS/2023_ZANDI_SENSITIVITY_STUDY_SEAICE

Outline

What is a forge ? definition, usages and objectives

Introduction to the gricad-gitlab platform

What is a Version Control System (VCS) ?

Introduction to GIT

Basic view of how to collaborate together with the gricad-gitlab platform and GIT

Illustration through the SEISCOPE project

Conclusion

Supplementary materials

Reproducible software deployment for high-performance computing 72

Conclusion - reproducibility research

Top figure from https://github.com/alegrand/SMPE/blob/master/lectures/talk_23_06_01_Gricad.pdf

Reproducible software deployment for high-performance computing 73

https://github.com/alegrand/SMPE/blob/master/lectures/talk_23_06_01_Gricad.pdf

Outline

What is a forge ? definition, usages and objectives

Introduction to the gricad-gitlab platform

What is a Version Control System (VCS) ?

Introduction to GIT

Basic view of how to collaborate together with the gricad-gitlab platform and GIT

Illustration through the SEISCOPE project

Conclusion

Supplementary materials

Reproducible software deployment for high-performance computing 73

Git - complements, some other useful commands

Branches:
To create a new branch and switch to it at the same time:
$ git checkout -b <branch_name>
To delete a branch in local:
$ git branch -d <branch_name>
To delete a branch in a remote repository:
$ git push <remote_name> --delete <branch_name>

History:
To check the history of a branch:
$ git log or $ git log -n <number> to display only the nth last number of commits
To display modifications of a file through commits:
$ git log -p <filename>

Reproducible software deployment for high-performance computing 74

Git - complements, some other useful commands

Display differences:
To display differences between the working tree and the last commit:
$ git diff or $ git diff <filename>
To see differences between what it is staged and the last commit:
$ git diff --staged <filename>
To see difference between commits:
$ git diff <commit_id1> <commit_id2>
To compare branches in local (at HEAD state):
$ git diff <branch1>..<branch2> It will show all the differences that branch2 has that are not in branch1
To compare a branch in local with the remote (at HEAD state):
$ git diff main remotes/origin/main

Reproducible software deployment for high-performance computing 75

Git - complements, some other useful commands

To correct/ go back:

The checkout command:
- To go back in a specific commit with only reading rights:
$ git checkout <commit_id>
- To cancel modification on a file since a specific commit:
$ git checkout <commit_id> <filename> need to commit it to keep it that way

The revert command to undo what was done on a commit (create a new commit):
$ git revert <commit_id> or $ git revert <commit_id> <filename>

The reset command:
- To reset the current branch HEAD to <commit_id>:
$ git reset <commit_id> modify the history !

A lot of possibilities (git-scm.com)

Reproducible software deployment for high-performance computing 76

https://git-scm.com/book/en/v2/Git-Basics-Undoing-Things

Git - complements, some useful commands

GIT won’t let the user switch between branches if there are modified files in the current branch.

(base) tarayoua@ist-156-58:∼$ git checkout newtest
error: Your local changes to the following files would be overwritten by checkout:
hello_file
Please commit your changes or stash them before you switch branches.
Aborting

Solutions:
1) Commit the changes or 2) Create another working tree
3) Use stashing → $ git help stash

To store the working tree: $ git stash save <choose_name> <-u>

To list the stash: $ git stash list

To show what is in the stash: $ git stash show <stash_name> -p

To apply the stash: $ git stash apply <stash_name>

To delete the stash: $ git stash drop <stash_name>

Reproducible software deployment for high-performance computing 77

Workflow git

git workflow: method of managing the git repository(s) common to all project participants.
Why choose a workflow?

• Different speakers in several contexts, with their own habits

• Hence complicated or even chaotic management and therefore probably ineffective

• Risk of wasting time!

Which workflow to choose?
Lots of possibilities and no single answer...

• Centralized workflow: everyone works on the same branch.
• requires a small team and a lot of discussion
• difficult to manage releases, unstable versions . . .

• Git workflow

• GitHub flow

• OneFlow

• ...

Reproducible software deployment for high-performance computing 78

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
https://guides.github.com/introduction/flow/
https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow

Workflow git: one example Gitflow

Figure from here
A little bit of documentation here

Reproducible software deployment for high-performance computing 79

https://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Working with a remote repository: SSH key

Why?
SSH keys: a necessary tool to manage secure connections between a local machine and the Gitlab server.

How?

1. Generate an SSH key pair (or check if you don’t already have one).

2. Copy your public key to the Gitlab server.

1 - Generate an SSH key pair
"This step is only necessary if you do not already have a set of keys !
To check if you already have a key: check the contents of the .ssh/ directory on your machine.
If it contains two files "id_rsa" and "id_rsa.pub" for instance you can proceed to the next step.
Otherwise, keys must be generated via the ssh-keygen command:
$ ssh-keygen -t rsa
After this step, two files are generated:

• .ssh/id_rsa: your private and strictly personal key

• .ssh/id_rsa.pub: the public key corresponding to your private key

Reproducible software deployment for high-performance computing 80

Working with a remote repository: SSH key

2 - Copy your public key
Transfer your public key to the Gitlab server.
Find the SSH keys menu on the “Preferences” page of your account on Gitlab. Copy the contents of the
".ssh/id_rsa.pub" file into the associated field.

For more details: https://docs.gitlab.com/ee/user/ssh.html

Reproducible software deployment for high-performance computing 81

https://docs.gitlab.com/ee/user/ssh.html

	What is a forge ? definition, usages and objectives
	Introduction to the gricad-gitlab platform
	What is a Version Control System (VCS) ?
	Introduction to GIT
	Basic view of how to collaborate together with the gricad-gitlab platform and GIT
	Illustration through the SEISCOPE project
	Conclusion
	Supplementary materials

