
Reproducible computational environment, when?
How to redeploy later and overthere

what had be deployed today and here?

Simon Tournier

Inserm US53 - UAR CNRS 2030
simon.tournier@inserm.fr

November 26th, 2024
https://hpc.guix.info

https://hpc.guix.info

The problem of Alice and Blake About long-term Work in progress

Replication and reproducibility crisis

More than 70% of researchers have tried and failed to reproduce another
scientist’s experiments, and more than half have failed to reproduce their own
experiments.

1,500 scientists lift the lid on reproducibility (Nature, 2016) (link)

Many causes. . . one solution?
at least, Open Science helps

(
reproductibility = verification
replicability = validation

)
S. Tournier Guix and long term: difficulties and countermeasures 1 / 40

https://www.nature.com/articles/533452a

The problem of Alice and Blake About long-term Work in progress

1905: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden
by A. Einstein Flüssigkeiten suspendierten Teilchen

▶ Only one author, verbal reasoning

▶ Motivated students are able to check by themselves that all the computations are correct

2022: Evolutionary-scale prediction of atomic level protein structure with a language model
by Z. Zin & al.

▶ 15 authors, references to software

▶ “[...] we scale language models from 8 million parameters up to 15 billion parameters.”

▶ Code and data seems available. . . but impossible^W hard to check that all is correct

Among several questions∗, scientific research is evolving,

what does it mean scientific research now?
∗is 15 billion parameters explanatory?

S. Tournier Guix and long term: difficulties and countermeasures 2 / 40

The problem of Alice and Blake About long-term Work in progress

1905: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden
by A. Einstein Flüssigkeiten suspendierten Teilchen

▶ Only one author, verbal reasoning

▶ Motivated students are able to check by themselves that all the computations are correct

2022: Evolutionary-scale prediction of atomic level protein structure with a language model
by Z. Zin & al.

▶ 15 authors, references to software

▶ “[...] we scale language models from 8 million parameters up to 15 billion parameters.”

▶ Code and data seems available. . . but impossible^W hard to check that all is correct

Among several questions∗, scientific research is evolving,

what does it mean scientific research now?
∗is 15 billion parameters explanatory?

S. Tournier Guix and long term: difficulties and countermeasures 2 / 40

The problem of Alice and Blake About long-term Work in progress

1905: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden
by A. Einstein Flüssigkeiten suspendierten Teilchen

▶ Only one author, verbal reasoning

▶ Motivated students are able to check by themselves that all the computations are correct

2022: Evolutionary-scale prediction of atomic level protein structure with a language model
by Z. Zin & al.

▶ 15 authors, references to software

▶ “[...] we scale language models from 8 million parameters up to 15 billion parameters.”

▶ Code and data seems available. . . but impossible^W hard to check that all is correct

Among several questions∗, scientific research is evolving,

what does it mean scientific research now?
∗is 15 billion parameters explanatory?

S. Tournier Guix and long term: difficulties and countermeasures 2 / 40

The problem of Alice and Blake About long-term Work in progress

Open Science Reproducible Research

Science = Transparent and Collective
Scientific result = Experiment + Numerical treatment

Science at the digital age:
1. Open Article HAL, BioArxiv
2. Open Data Data Repositories, Zenodo
3. Open Source Forges, GitLab, Software Heritage

4. Computational env. ?

how to all that?

today’s topic
considering long-term (1-5 years)

open science, a tautology?
S. Tournier Guix and long term: difficulties and countermeasures 3 / 40

The problem of Alice and Blake About long-term Work in progress

Open Science Reproducible Research

Science = Transparent and Collective
Scientific result = Experiment + Numerical treatment

Science at the digital age:
1. Open Article HAL, BioArxiv
2. Open Data Data Repositories, Zenodo
3. Open Source Forges, GitLab, Software Heritage

4. Computational env. ?

how to glue all that?

today’s topic
considering long-term (1-5 years)

open science, a tautology?
S. Tournier Guix and long term: difficulties and countermeasures 3 / 40

The problem of Alice and Blake About long-term Work in progress

Open Science Reproducible Research

Science = Transparent and Collective
Scientific result = Experiment + Numerical treatment

Science at the digital age:
1. Open Article HAL, BioArxiv
2. Open Data Data Repositories, Zenodo
3. Open Source Forges, GitLab, Software Heritage
4. Computational env. ?

how to glue all that?

today’s topic
considering long-term (1-5 years)

open science, a tautology?
S. Tournier Guix and long term: difficulties and countermeasures 3 / 40

The problem of Alice and Blake About long-term Work in progress

Open Science Reproducible Research

Science = Transparent and Collective
Scientific result = Experiment + Numerical treatment

Science at the digital age:
1. Open Article HAL, BioArxiv
2. Open Data Data Repositories, Zenodo
3. Open Source Forges, GitLab, Software Heritage
4. Computational env. ?

how to glue all that?

today’s topic
considering long-term (1-5 years)

open science, a tautology?
S. Tournier Guix and long term: difficulties and countermeasures 3 / 40

The problem of Alice and Blake About long-term Work in progress

Redo (reproduce or replicate) a result?

audit opaque depend?

result ←− paper + data + analysis

data ←− protocol + instruments + materials

⋆

analysis ←− script + data + environment

environment

▶ audit is the « tractable » part
▶ opaque is generally the hard part

▶ how to evacuate depend? from the equations

. . .
. . . try to turn environment into audit

⋆ our issue
(« computer » ≈ instrument and « computation » ≈ measurement

computationnal env. ↔ experimental setup

)

S. Tournier Guix and long term: difficulties and countermeasures 4 / 40

The problem of Alice and Blake About long-term Work in progress

Redo (reproduce or replicate) a result?

audit opaque depend?

result ←− paper + data + analysis

data ←− protocol + instruments + materials

⋆

analysis ←− script + data + environment

environment

▶ audit is the « tractable » part
▶ opaque is generally the hard part
▶ how to evacuate depend? from the equations

. . .
. . . try to turn environment into audit

⋆ our issue
(« computer » ≈ instrument and « computation » ≈ measurement

computationnal env. ↔ experimental setup

)

S. Tournier Guix and long term: difficulties and countermeasures 4 / 40

The problem of Alice and Blake About long-term Work in progress

Redo (reproduce or replicate) a result?

audit opaque depend?

result ←− paper + data + analysis

data ←− protocol + instruments + materials
⋆ analysis ←− script + data + environment

environment

▶ audit is the « tractable » part
▶ opaque is generally the hard part
▶ how to evacuate depend? from the equations

. . .
. . . try to turn environment into audit

⋆ our issue

(« computer » ≈ instrument and « computation » ≈ measurement
computationnal env. ↔ experimental setup

)

S. Tournier Guix and long term: difficulties and countermeasures 4 / 40

The problem of Alice and Blake About long-term Work in progress

Redo (reproduce or replicate) a result?

audit opaque depend?

result ←− paper + data + analysis

data ←− protocol + instruments + materials
⋆ analysis ←− script + data + environment

▶ audit is the « tractable » part
▶ opaque is generally the hard part
▶ how to evacuate depend? from the equations. . .

. . . try to turn environment into audit

⋆ our issue

(« computer » ≈ instrument and « computation » ≈ measurement
computationnal env. ↔ experimental setup

)

S. Tournier Guix and long term: difficulties and countermeasures 4 / 40

The problem of Alice and Blake About long-term Work in progress

Redo (reproduce or replicate) a result?

audit opaque depend?

result ←− paper + data + analysis

data ←− protocol + instruments + materials
⋆ analysis ←− script + data + environment

▶ audit is the « tractable » part
▶ opaque is generally the hard part
▶ how to evacuate depend? from the equations. . .

. . . try to turn environment into audit

⋆ our issue
(« computer » ≈ instrument and « computation » ≈ measurement

computationnal env. ↔ experimental setup

)
S. Tournier Guix and long term: difficulties and countermeasures 4 / 40

The problem of Alice and Blake About long-term Work in progress

Challenges about reproducible research in science

From the « scientific method » viewpoint:
controlling the source of variations

⇒ transparent as with instrument ≈ computer

From the « scientific knowledge » viewpoint: (universal?)
▶ Independant observer must be able to observe the same result.
▶ The observation must be sustainable (to some extent).
⇒ collective

In a world where (almost) all is data

how to redeploy later and elsewhere what has been deployed today and here?

(implicitely using a « computer »)

S. Tournier Guix and long term: difficulties and countermeasures 5 / 40

The problem of Alice and Blake About long-term Work in progress

Challenges about reproducible research in science

From the « scientific method » viewpoint:
controlling the source of variations

⇒ transparent as with instrument ≈ computer

From the « scientific knowledge » viewpoint: (universal?)
▶ Independant observer must be able to observe the same result.
▶ The observation must be sustainable (to some extent).
⇒ collective

In a world where (almost) all is data

how to redeploy later and elsewhere what has been deployed today and here?

(implicitely using a « computer »)
S. Tournier Guix and long term: difficulties and countermeasures 5 / 40

The problem of Alice and Blake About long-term Work in progress

We will speak about. . .

1 The problem of Alice and Blake
Capturing what?
The Guix’s way

2 About long-term

3 Work in progress

(some examples from C programming language but all apply equally to any other computational stack)

S. Tournier Guix and long term: difficulties and countermeasures 6 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions (1/2)
Bessel function J0 using C programming language

#i n c l u d e <s t d i o . h>
#i n c l u d e <math . h>

i n t main (){
p r i n t f ("%E\n" , j 0 f (0 x1 .33 d152p+1f)) ;

}

Alice sees: 5.643440E-08
Blake sees: 5.963430E-08

Why? In spite of everything being available (open)

Determine if the difference is significant or not is let to experts, scientific field by scientific field

S. Tournier Guix and long term: difficulties and countermeasures 7 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions (1/2)
Bessel function J0 using C programming language

#i n c l u d e <s t d i o . h>
#i n c l u d e <math . h>

i n t main (){
p r i n t f ("%E\n" , j 0 f (0 x1 .33 d152p+1f)) ;

}

Alice sees: 5.643440E-08
Blake sees: 5.963430E-08

Why? In spite of everything being available (open)

Determine if the difference is significant or not is let to experts, scientific field by scientific field
S. Tournier Guix and long term: difficulties and countermeasures 7 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions (1/2)
Bessel function J0 using C programming language

#i n c l u d e <s t d i o . h>
#i n c l u d e <math . h>

i n t main (){
p r i n t f ("%E\n" , j 0 f (0 x1 .33 d152p+1f)) ;

}

Alice sees: 5.643440E-08
Blake sees: 5.963430E-08

Why? In spite of everything being available (open)

Determine if the difference is significant or not is let to experts, scientific field by scientific field
S. Tournier Guix and long term: difficulties and countermeasures 7 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions (2/2)
Alice and Blake both run « GCC at version 11.2.0 »

still different∗

alice@laptop$

gcc bessel.c && ./a.out

5.643440E-08
blake@desktop$

gcc bessel.c -lm -fno-builtin && ./a.out

5.963430E-08

(due to constant folding∗∗)

Alice and Blake are running two different computationnal environments

More than version number is required
∗Not an issue with floating-point computations

∗∗C language is an example, other source but similar issues with Python, R, Perl, etc.

S. Tournier Guix and long term: difficulties and countermeasures 8 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions (2/2)
Alice and Blake both run « GCC at version 11.2.0 »

still different∗

alice@laptop$

gcc bessel.c && ./a.out

5.643440E-08
blake@desktop$

gcc bessel.c -lm -fno-builtin && ./a.out

5.963430E-08

(due to constant folding∗∗)

Alice and Blake are running two different computationnal environments

More than version number is required

∗Not an issue with floating-point computations

∗∗C language is an example, other source but similar issues with Python, R, Perl, etc.

S. Tournier Guix and long term: difficulties and countermeasures 8 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions (2/2)
Alice and Blake both run « GCC at version 11.2.0 »

still different∗

alice@laptop$ gcc bessel.c && ./a.out
5.643440E-08

blake@desktop$ gcc bessel.c -lm -fno-builtin && ./a.out
5.963430E-08

(due to constant folding∗∗)

Alice and Blake are running two different computationnal environments

More than version number is required

∗Not an issue with floating-point computations
∗∗C language is an example, other source but similar issues with Python, R, Perl, etc.

S. Tournier Guix and long term: difficulties and countermeasures 8 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions (2/2)
Alice and Blake both run « GCC at version 11.2.0 »

still different∗

alice@laptop$ gcc bessel.c && ./a.out
5.643440E-08

blake@desktop$ gcc bessel.c -lm -fno-builtin && ./a.out
5.963430E-08

(due to constant folding∗∗)

Alice and Blake are running two different computationnal environments

More than version number is required

∗Not an issue with floating-point computations
∗∗C language is an example, other source but similar issues with Python, R, Perl, etc.

S. Tournier Guix and long term: difficulties and countermeasures 8 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions (2/2)
Alice and Blake both run « GCC at version 11.2.0 »

still different∗

alice@laptop$ gcc bessel.c && ./a.out
5.643440E-08

blake@desktop$ gcc bessel.c -lm -fno-builtin && ./a.out
5.963430E-08

(due to constant folding∗∗)

Alice and Blake are running two different computationnal environments

More than version number is required
∗Not an issue with floating-point computations

∗∗C language is an example, other source but similar issues with Python, R, Perl, etc.
S. Tournier Guix and long term: difficulties and countermeasures 8 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions about a computational environment

▶ What is the code source?
▶ What are the tools required for building?
▶ What are the tools required for running?
▶ And recursively for each tool. . .

Answering these questions enables control over sources of variations

How to capture the answer of these questions?

Usually: package manager (Conda, APT, Brew, . . .); Modulefiles; container; etc. ⇒ not enough!

toward a solution: Guix

S. Tournier Guix and long term: difficulties and countermeasures 9 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions about a computational environment

▶ What is the code source?
▶ What are the tools required for building?
▶ What are the tools required for running?
▶ And recursively for each tool. . .

Answering these questions enables control over sources of variations

How to capture the answer of these questions?

Usually: package manager (Conda, APT, Brew, . . .); Modulefiles; container; etc. ⇒ not enough!

toward a solution: Guix

S. Tournier Guix and long term: difficulties and countermeasures 9 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions about a computational environment

▶ What is the code source?
▶ What are the tools required for building?
▶ What are the tools required for running?
▶ And recursively for each tool. . .

Answering these questions enables control over sources of variations

How to capture the answer of these questions?

Usually: package manager (Conda, APT, Brew, . . .); Modulefiles; container; etc. ⇒ not enough!

toward a solution: Guix

S. Tournier Guix and long term: difficulties and countermeasures 9 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

Questions about a computational environment

▶ What is the code source?
▶ What are the tools required for building?
▶ What are the tools required for running?
▶ And recursively for each tool. . .

Answering these questions enables control over sources of variations

How to capture the answer of these questions?

Usually: package manager (Conda, APT, Brew, . . .); Modulefiles; container; etc. ⇒ not enough!

toward a solution: Guix

S. Tournier Guix and long term: difficulties and countermeasures 9 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

When Alice says « GCC at version 11.2.0 » guix graph

Is it the same “version” of GCC if mpfr is replaced by version 4.0 ?

complete graph: 43 ou 104 ou 125 ou 218 nodes
(depending what we consider as binary seed for bootstrapping)

S. Tournier Guix and long term: difficulties and countermeasures 10 / 40

The problem of Alice and Blake About long-term Work in progress

Capturing what?

What does reproducing a computational environment mean?

Alice says “GCC at version 11.2.0”

All the tools (node of the graph) must be captured!

Remember
#i n c l u d e <s t d i o . h>
#i n c l u d e <math . h>

i n t main (){
p r i n t f ("%E\n" , j 0 f (0 x1 .33 d152p+1f)) ;

}

alice@laptop$ gcc bessel.c && ./a.out
5.643440E-08

carole@desktop$ gcc bessel.c -lm -fno-builtin && ./a.out
5.963430E-08

(due to constant folding)
S. Tournier Guix and long term: difficulties and countermeasures 11 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

What is my version of Guix? guix describe = state

$ guix describe
Generation 76 Apr 25 2022 12:44:37 (current)

guix eb34ff1
repository URL: https://git.savannah.gnu.org/git/guix.git
branch: master
commit: eb34ff16cc9038880e87e1a58a93331fca37ad92

$ guix --version
guix (GNU Guix) eb34ff16cc9038880e87e1a58a93331fca37ad92

one state pins the complete collection of packages and Guix itself

A state can refer to several channels (= Git repository), pointing to URL, branches or commits different
A channel contains a list of recipes (code source, how to build the packages, etc.)

S. Tournier Guix and long term: difficulties and countermeasures 12 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

What is my version of Guix? guix describe = state

$ guix describe
Generation 76 Apr 25 2022 12:44:37 (current)

guix eb34ff1
repository URL: https://git.savannah.gnu.org/git/guix.git
branch: master
commit: eb34ff16cc9038880e87e1a58a93331fca37ad92

$ guix --version
guix (GNU Guix) eb34ff16cc9038880e87e1a58a93331fca37ad92

one state pins the complete collection of packages and Guix itself

A state can refer to several channels (= Git repository), pointing to URL, branches or commits different
A channel contains a list of recipes (code source, how to build the packages, etc.)

S. Tournier Guix and long term: difficulties and countermeasures 12 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

State = Directed Acyclic Graph(DAG)

Each node specifies a recipe defining:

▶ code source and potentially some ad-hoc modifications (patch)
▶ build-time tools compilers, build automation, configuration flags etc.
▶ dependencies other packages (→recursive ⇝ graph)

Complete graph : Python = 137 nodes, Numpy = 189, Matplotlib = 915, Scipy = 1439 nodes
S. Tournier Guix and long term: difficulties and countermeasures 13 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Recipe for defining a package one node of the graph

(define python ;definition of the node python
(package

(name "python")
(version "3.9.9")
(source ...) ;points to URI source code
(build-system gnu-build-system) ;./ configure & make
(arguments ...) ; configure flags, etc.
(inputs (list bzip2 ;other nodes -> graph (DAG)

expat gdbm libffi sqlite ...))))

▶ Each inputs is similarly defined (recursion → graph)
▶ There is no cycle (bzip2 or its inputs cannot refer to python)

What are the roots of the graph? Part of the broad bootstrapping (link) problem
S. Tournier Guix and long term: difficulties and countermeasures 13 / 40

https://en.wikipedia.org/wiki/Bootstrapping_(compilers)

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Package manager = graph manager

How to capture this information?

▶ What is the source code ? source
▶ What are the tools required for building?
▶ What are the tools required for running?
▶ How is each tool produced? build-system, arguments

inputs, propagated-, native-inputs

(define python ;definition of the node python
(package

(name "python")
(version "3.9.9")
(source ...) ;points to URI source code
(build-system gnu-build-system) ;./ configure & make
(arguments ...) ; configure flags, etc.
(inputs (list bzip2 ;other nodes -> graph (DAG)

expat gdbm libffi sqlite ...))))

S. Tournier Guix and long term: difficulties and countermeasures 14 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Package manager = graph manager

How to capture this information?

▶ What is the source code ? source
▶ What are the tools required for building?
▶ What are the tools required for running?
▶ How is each tool produced? build-system, arguments

inputs, propagated-, native-inputs

(define python ;definition of the node python
(package

(name "python")
(version "3.9.9")
(source ...) ;points to URI source code
(build-system gnu-build-system) ;./ configure & make
(arguments ...) ; configure flags, etc.
(inputs (list bzip2 ;other nodes -> graph (DAG)

expat gdbm libffi sqlite ...))))S. Tournier Guix and long term: difficulties and countermeasures 14 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Revision = one specific graph

« GCC at version 11.2.0 » = one pinned graph

$ guix describe
Generation 76 Apr 25 2022 12:44:37 (current)

guix eb34ff1
repository URL: https://git.savannah.gnu.org/git/guix.git
branch: master
commit: eb34ff16cc9038880e87e1a58a93331fca37ad92

this revision eb34ff1 captures the complete graph

▶ Alice says « I used Guix at revision eb34ff1 »
▶ Blake knows all for reproducing the same environment

S. Tournier Guix and long term: difficulties and countermeasures 15 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Collaboration in action Guix is helping

collaborate = share one computational environment

⇒ share one specific graph

Alice
describes her environment:
▶ the list of the tools using the file manifest.scm, spawns her environment e.g.,

guix shell -m manifest.scm

▶ the revision (Guix itself and potentially all the other channels)
guix describe -f channels > state-alice.scm

▶ then shares these two files: state-alice.scm and manifest.scm

Blake
spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

S. Tournier Guix and long term: difficulties and countermeasures 16 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Collaboration in action Guix is helping

collaborate = share one computational environment

⇒ share one specific graph

Alice
describes her environment:
▶ the list of the tools using the file manifest.scm, spawns her environment e.g.,

guix shell -m manifest.scm
▶ the revision (Guix itself and potentially all the other channels)

guix describe -f channels > state-alice.scm

▶ then shares these two files: state-alice.scm and manifest.scm

Blake
spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

S. Tournier Guix and long term: difficulties and countermeasures 16 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Collaboration in action Guix is helping

collaborate = share one computational environment

⇒ share one specific graph

Alice
describes her environment:
▶ the list of the tools using the file manifest.scm, spawns her environment e.g.,

guix shell -m manifest.scm
▶ the revision (Guix itself and potentially all the other channels)

guix describe -f channels > state-alice.scm

▶ then shares these two files: state-alice.scm and manifest.scm

Blake
spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

S. Tournier Guix and long term: difficulties and countermeasures 16 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Collaboration in action Guix is helping

collaborate = share one computational environment ⇒ share one specific graph

Alice
describes her environment:
▶ the list of the tools using the file manifest.scm, spawns her environment e.g.,

guix shell -m manifest.scm
▶ the revision (Guix itself and potentially all the other channels)

guix describe -f channels > state-alice.scm

▶ then shares these two files: state-alice.scm and manifest.scm

Blake
spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

S. Tournier Guix and long term: difficulties and countermeasures 16 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Collaboration in action Guix is helping

collaborate = share one computational environment ⇒ share one specific graph

Alice
describes her environment:
▶ the list of the tools using the file manifest.scm, spawns her environment e.g.,

guix shell -m manifest.scm
▶ the revision (Guix itself and potentially all the other channels)

guix describe -f channels > state-alice.scm
▶ then shares these two files: state-alice.scm and manifest.scm

Blake
spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm

S. Tournier Guix and long term: difficulties and countermeasures 16 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Collaboration in action Guix is helping

collaborate = share one computational environment ⇒ share one specific graph

Alice
describes her environment:
▶ the list of the tools using the file manifest.scm, spawns her environment e.g.,

guix shell -m manifest.scm
▶ the revision (Guix itself and potentially all the other channels)

guix describe -f channels > state-alice.scm
▶ then shares these two files: state-alice.scm and manifest.scm

Blake
spawns the same computational environment from these two files

guix time-machine -C state-alice.scm -- shell -m manifest.scm
S. Tournier Guix and long term: difficulties and countermeasures 16 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

Reproducible = jump to different states guix time-machine

time2018 Carole Alice Blake

d7e57e eb34ff1 3682bd

Dan

c99c3d

Requirements for being reproductible with the passing of time using Guix:
▶ Preservation of the all source code
▶ Backward compatibility of the Linux kernel
▶ Compatibility of hardware (to some extent)

▶
(

No time-bomb!
)

What is the size of this temporal window where these 3 conditions are satisfied?

To my knowledge, the Guix project is quasi-unique by experimenting since v1.0 in 2019.
S. Tournier Guix and long term: difficulties and countermeasures 17 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

how to redeploy later and elsewhere what has been deployed today and here?

Traceability and transparency

being collectively able to study bug-to-bug

Guix should manage everything about the environment

guix time-machine -C state.scm -- cmd -m list-software.scm

if it is specified

« how to build » channels.scm (state)

« what to build » manifest.scm (software list)

What is required in addition to these 2 files?

S. Tournier Guix and long term: difficulties and countermeasures 18 / 40

The problem of Alice and Blake About long-term Work in progress

The Guix’s way

how to redeploy later and elsewhere what has been deployed today and here?

Traceability and transparency

being collectively able to study bug-to-bug

Guix should manage everything about the environment

guix time-machine -C state.scm -- cmd -m list-software.scm

if it is specified

« how to build » channels.scm (state)

« what to build » manifest.scm (software list)

What is required in addition to these 2 files?

S. Tournier Guix and long term: difficulties and countermeasures 18 / 40

The problem of Alice and Blake About long-term Work in progress

Still issues!

Guix cannot fix all the broken world, isn’t it? (opinionated)

▶ Which one is efficient?

It depends on efficient. . . fast? torque? weight?

▶ Which one is robust?

I know which one I choose for going through the unknown.

Easy vs Complicated
vs vs

Simple vs Complex

Easy: near to our skill, familiar (≈relative)
Simple: one task, one concept (≈objective)

Rule of thumb
▶ Composing simple systems builds complex and robust systems
▶ Complex and easy systems are complicated thus fragile
▶ If you have no idea where to start for auditing a tool, it’s suspicous!

S. Tournier Guix and long term: difficulties and countermeasures 19 / 40

The problem of Alice and Blake About long-term Work in progress

Still issues!

Guix cannot fix all the broken world, isn’t it? (opinionated)

▶ Which one is efficient?

It depends on efficient. . . fast? torque? weight?
▶ Which one is robust?

I know which one I choose for going through the unknown.

Easy vs Complicated
vs vs

Simple vs Complex

Easy: near to our skill, familiar (≈relative)
Simple: one task, one concept (≈objective)

Rule of thumb
▶ Composing simple systems builds complex and robust systems
▶ Complex and easy systems are complicated thus fragile
▶ If you have no idea where to start for auditing a tool, it’s suspicous!

S. Tournier Guix and long term: difficulties and countermeasures 19 / 40

The problem of Alice and Blake About long-term Work in progress

Still issues!

Guix cannot fix all the broken world, isn’t it? (opinionated)

▶ Which one is efficient? It depends on efficient. . . fast? torque? weight?

▶ Which one is robust?

I know which one I choose for going through the unknown.

Easy vs Complicated
vs vs

Simple vs Complex

Easy: near to our skill, familiar (≈relative)
Simple: one task, one concept (≈objective)

Rule of thumb
▶ Composing simple systems builds complex and robust systems
▶ Complex and easy systems are complicated thus fragile
▶ If you have no idea where to start for auditing a tool, it’s suspicous!

S. Tournier Guix and long term: difficulties and countermeasures 19 / 40

The problem of Alice and Blake About long-term Work in progress

Still issues!

Guix cannot fix all the broken world, isn’t it? (opinionated)

▶ Which one is efficient? It depends on efficient. . . fast? torque? weight?
▶ Which one is robust?

I know which one I choose for going through the unknown.

Easy vs Complicated
vs vs

Simple vs Complex

Easy: near to our skill, familiar (≈relative)
Simple: one task, one concept (≈objective)

Rule of thumb
▶ Composing simple systems builds complex and robust systems
▶ Complex and easy systems are complicated thus fragile
▶ If you have no idea where to start for auditing a tool, it’s suspicous!

S. Tournier Guix and long term: difficulties and countermeasures 19 / 40

The problem of Alice and Blake About long-term Work in progress

Still issues!

Guix cannot fix all the broken world, isn’t it? (opinionated)

▶ Which one is efficient? It depends on efficient. . . fast? torque? weight?
▶ Which one is robust? I know which one I choose for going through the unknown.

Easy vs Complicated
vs vs

Simple vs Complex

Easy: near to our skill, familiar (≈relative)
Simple: one task, one concept (≈objective)

Rule of thumb
▶ Composing simple systems builds complex and robust systems
▶ Complex and easy systems are complicated thus fragile
▶ If you have no idea where to start for auditing a tool, it’s suspicous!

S. Tournier Guix and long term: difficulties and countermeasures 19 / 40

The problem of Alice and Blake About long-term Work in progress

Still issues!

Guix cannot fix all the broken world, isn’t it? (opinionated)

▶ Which one is efficient? It depends on efficient. . . fast? torque? weight?
▶ Which one is robust? I know which one I choose for going through the unknown.

Easy vs Complicated
vs vs

Simple vs Complex

Easy: near to our skill, familiar (≈relative)
Simple: one task, one concept (≈objective)

Rule of thumb
▶ Composing simple systems builds complex and robust systems
▶ Complex and easy systems are complicated thus fragile
▶ If you have no idea where to start for auditing a tool, it’s suspicous!

S. Tournier Guix and long term: difficulties and countermeasures 19 / 40

The problem of Alice and Blake About long-term Work in progress

Still issues!

Guix cannot fix all the broken world, isn’t it? (opinionated)

▶ Which one is efficient? It depends on efficient. . . fast? torque? weight?
▶ Which one is robust? I know which one I choose for going through the unknown.

Easy vs Complicated
vs vs

Simple vs Complex

Easy: near to our skill, familiar (≈relative)
Simple: one task, one concept (≈objective)

Rule of thumb
▶ Composing simple systems builds complex and robust systems
▶ Complex and easy systems are complicated thus fragile
▶ If you have no idea where to start for auditing a tool, it’s suspicous!

S. Tournier Guix and long term: difficulties and countermeasures 19 / 40

The problem of Alice and Blake About long-term Work in progress

Still issues!

(Un)Reproducible research (opinionated)

the main issue is more about our collective practises
than about technical limitations of our tools

Technical Roadblocks
1 What is the size of the binary seed rooting the graph of dependencies?

language: Haskell, OCaml, Rust, etc.
2 Computational environment (deployment) bit-for-bit reproducible is reachable!

Bit-for-bit reproducible computation is more difficult. Does it make sense?
3 How to audit pre-trained Machine Learning models?
4 Hardware evolution over project duration (2-10 years)

What the time will eat is unknown.

consider efficient as robust (and frugal) then the rest, eventually
S. Tournier Guix and long term: difficulties and countermeasures 20 / 40

The problem of Alice and Blake About long-term Work in progress

Food for thought

ACM REP 24: Conference on Reproducibility and Replicability

▶ The Impact of Hardware Variability
on Applications Packaged with Docker and Guix: a Case Study in Neuroimaging (link)

we study the effect of nine different CPU models using two software packaging systems
(Docker and Guix), and we compare the resulting hardware variability to numerical
variability measured with random rounding.

▶ Longevity of Artifacts in Leading Parallel and
Distributed Systems Conferences: a Review of the State of the Practice in 2023 (link)

By reviewing the methods and tools used to create and share artifacts in a technical, in-
depth, and article content-agnostic manner, we found that the state of practice does not
address reproducibility in terms of artifact longevity and we expose eight observations
that support this finding.

▶ Embracing Deep Variability For Reproducibility and Replicability (link)

S. Tournier Guix and long term: difficulties and countermeasures 21 / 40

https://dx.doi.org/10.1145/3641525.3663626
https://dx.doi.org/10.1145/3641525.3663626
https://dx.doi.org/10.1145/3641525.3663631
https://dx.doi.org/10.1145/3641525.3663631
https://univ-rennes.hal.science/hal-04582287v1

The problem of Alice and Blake About long-term Work in progress

Preservation of what? and why?

Reproducible deployment (ideally)

▶ Alice says the tool r-harmony from Guix revision eb34ff1.

▶ Blake runs on a different machine or at a different point in time:

guix time-machine --commit=eb34ff1 -- install r-harmony

and Blake deploys the exact same software environment, bit-for-bit.

Under the assumptions
▶ All the source code is still publicly available. (e.g., more than 477)
▶ All the intermediary builds are deterministic.

S. Tournier Guix and long term: difficulties and countermeasures 22 / 40

The problem of Alice and Blake About long-term Work in progress

Still publicly available?

“Link rot” empirical evaluation = the problem (scythe)

May 2019 Apr. 2020 Nov. 2020 May 2021 Dec. 2022

v1.0.0 v1.1.0 v1.2.0 v1.3.0 v1.4.0

#sources 8 794 11 659 13 609 15 520 20 184

avail. 91.5% 92.4% 95.0% 95.7% 96.4%
missing 8.5% 7.6% 5.0% 4.3% 3.6%
hash mis. 87 63 69 66 52

▶ openjdk-9.181.tar.bz2 is unavailable
from its original upstream URL as it appears in Guix v1.4.0.

▶ openjdk@9.181 had 184 dependents
loosing it =⇒ loosing 185 packages, not one.

S. Tournier Guix and long term: difficulties and countermeasures 23 / 40

The problem of Alice and Blake About long-term Work in progress

Still publicly available?

“Link rot” empirical evaluation = the problem (scythe)

May 2019 Apr. 2020 Nov. 2020 May 2021 Dec. 2022

v1.0.0 v1.1.0 v1.2.0 v1.3.0 v1.4.0

#sources 8 794 11 659 13 609 15 520 20 184

avail. 91.5% 92.4% 95.0% 95.7% 96.4%
missing 8.5% 7.6% 5.0% 4.3% 3.6%
hash mis. 87 63 69 66 52

▶ openjdk-9.181.tar.bz2 is unavailable
from its original upstream URL as it appears in Guix v1.4.0.

▶ openjdk@9.181 had 184 dependents
loosing it =⇒ loosing 185 packages, not one.

S. Tournier Guix and long term: difficulties and countermeasures 23 / 40

The problem of Alice and Blake About long-term Work in progress

Still publicly available?

“Link rot” empirical evaluation = the problem (scythe)

May 2019 Apr. 2020 Nov. 2020 May 2021 Dec. 2022

v1.0.0 v1.1.0 v1.2.0 v1.3.0 v1.4.0

#sources 8 794 11 659 13 609 15 520 20 184

avail. 91.5% 92.4% 95.0% 95.7% 96.4%
missing 8.5% 7.6% 5.0% 4.3% 3.6%
hash mis. 87 63 69 66 52

▶ openjdk-9.181.tar.bz2 is unavailable
from its original upstream URL as it appears in Guix v1.4.0.

▶ openjdk@9.181 had 184 dependents
loosing it =⇒ loosing 185 packages, not one.

S. Tournier Guix and long term: difficulties and countermeasures 23 / 40

The problem of Alice and Blake About long-term Work in progress

Software Heritage comes in!
Like all digital information, source code is fragile

link rot: projects are created, moved around, removed
“too big to fail”: e.g., Gitorious, Google Code, Bitbucket

collect, preserve and share source code

If a website disappears, you go to the Internet Archive. . .
Where do you do if (a repository on) GitHub or GitLab goes away?

Answer: Software Heritage

The SWH archive is the largest publicly available archive of software source code.

S. Tournier Guix and long term: difficulties and countermeasures 24 / 40

The problem of Alice and Blake About long-term Work in progress

Software Heritage comes in!
Like all digital information, source code is fragile

link rot: projects are created, moved around, removed
“too big to fail”: e.g., Gitorious, Google Code, Bitbucket

collect, preserve and share source code

If a website disappears, you go to the Internet Archive. . .
Where do you do if (a repository on) GitHub or GitLab goes away?

Answer: Software Heritage

The SWH archive is the largest publicly available archive of software source code.

S. Tournier Guix and long term: difficulties and countermeasures 24 / 40

The problem of Alice and Blake About long-term Work in progress

Software Heritage comes in!
Like all digital information, source code is fragile

link rot: projects are created, moved around, removed
“too big to fail”: e.g., Gitorious, Google Code, Bitbucket

collect, preserve and share source code

If a website disappears, you go to the Internet Archive. . .
Where do you do if (a repository on) GitHub or GitLab goes away?

Answer: Software Heritage

The SWH archive is the largest publicly available archive of software source code.

S. Tournier Guix and long term: difficulties and countermeasures 24 / 40

The problem of Alice and Blake About long-term Work in progress

Software Heritage comes in!
Like all digital information, source code is fragile

link rot: projects are created, moved around, removed
“too big to fail”: e.g., Gitorious, Google Code, Bitbucket

collect, preserve and share source code

If a website disappears, you go to the Internet Archive. . .
Where do you do if (a repository on) GitHub or GitLab goes away?

Answer: Software Heritage

The SWH archive is the largest publicly available archive of software source code.
S. Tournier Guix and long term: difficulties and countermeasures 24 / 40

The problem of Alice and Blake About long-term Work in progress

How to fetch source code?

(d e f i n e - p u b l i c r−harmony
(package

(name "r−harmony")
(version " 1 . 2 . 0 ")
(source
(origin

(method url-fetch)
(uri (s t r i n g - a p p e n d

" h t t p : // c ran . r−p r o j e c t . o rg / s r c / c o n t r i b /harmony_" version " . t a r . gz "))
(sha256
(base32 "1 d f7bb9ba3m0c44 fhmh8cs4h l kh4 f f f jwm8rz7 l 87 l f 5pdy7sg56 "))))

; ; v a r i o u s f i e l d s omi t ted

(d e f i n e - p u b l i c py thon−sc i k i t− l e a r n
(package

(name " py t hon−sc i k i t− l e a r n ")
(version " 1 . 4 . 2 ")
(source
(origin (method git-fetch)

(uri (g i t− r e f e r e n c e
(url " h t t p s : // g i t hub . com/ s c i k i t − l e a r n / s c i k i t − l e a r n ")
(commit version)))

(sha256
(base32 "0 pdd508c9540x9q imq83b8kspb6mb98w7w7 i7 lnb1 jq j7 r i j a l 6 f "))))

; ; v a r i o u s f i e l d s omi t ted

S. Tournier Guix and long term: difficulties and countermeasures 25 / 40

The problem of Alice and Blake About long-term Work in progress

How to fetch source code?

Source code identification
origin specifies:

method: tarball, VCS as Git, Mercurial, Subversion, etc.
uri: upstream location (URL)

sha256: cryptographic hash

source code is essentially content-addressed

If uri becomes stale, e.g., URL no longer available or tempered (hash mismatch)
Then Blake can work around. (if a copy is available elsewhere)

Elsewhere might be

▶ a new URL
guix download finds the source with the expected hash and proceeds.

▶ a content-addressed server
as served by the Guix project or the Nix project, or the Software Heritage initiative.

S. Tournier Guix and long term: difficulties and countermeasures 26 / 40

The problem of Alice and Blake About long-term Work in progress

How to fetch source code?

Source code identification
origin specifies:

method: tarball, VCS as Git, Mercurial, Subversion, etc.
uri: upstream location (URL)

sha256: cryptographic hash

source code is essentially content-addressed

If uri becomes stale, e.g., URL no longer available or tempered (hash mismatch)
Then Blake can work around. (if a copy is available elsewhere)

Elsewhere might be

▶ a new URL
guix download finds the source with the expected hash and proceeds.

▶ a content-addressed server
as served by the Guix project or the Nix project, or the Software Heritage initiative.

S. Tournier Guix and long term: difficulties and countermeasures 26 / 40

The problem of Alice and Blake About long-term Work in progress

How to fetch source code?

Source code identification
origin specifies:

method: tarball, VCS as Git, Mercurial, Subversion, etc.
uri: upstream location (URL)

sha256: cryptographic hash

source code is essentially content-addressed

If uri becomes stale, e.g., URL no longer available or tempered (hash mismatch)

Then Blake can work around. (if a copy is available elsewhere)

Elsewhere might be

▶ a new URL
guix download finds the source with the expected hash and proceeds.

▶ a content-addressed server
as served by the Guix project or the Nix project, or the Software Heritage initiative.

S. Tournier Guix and long term: difficulties and countermeasures 26 / 40

The problem of Alice and Blake About long-term Work in progress

How to fetch source code?

Source code identification
origin specifies:

method: tarball, VCS as Git, Mercurial, Subversion, etc.
uri: upstream location (URL)

sha256: cryptographic hash

source code is essentially content-addressed

If uri becomes stale, e.g., URL no longer available or tempered (hash mismatch)
Then Blake can work around. (if a copy is available elsewhere)

Elsewhere might be

▶ a new URL
guix download finds the source with the expected hash and proceeds.

▶ a content-addressed server
as served by the Guix project or the Nix project, or the Software Heritage initiative.

S. Tournier Guix and long term: difficulties and countermeasures 26 / 40

The problem of Alice and Blake About long-term Work in progress

How to fetch source code?

Source code identification
origin specifies:

method: tarball, VCS as Git, Mercurial, Subversion, etc.
uri: upstream location (URL)

sha256: cryptographic hash

source code is essentially content-addressed

If uri becomes stale, e.g., URL no longer available or tempered (hash mismatch)
Then Blake can work around. (if a copy is available elsewhere)

Elsewhere might be
▶ a new URL

guix download finds the source with the expected hash and proceeds.

▶ a content-addressed server
as served by the Guix project or the Nix project, or the Software Heritage initiative.

S. Tournier Guix and long term: difficulties and countermeasures 26 / 40

The problem of Alice and Blake About long-term Work in progress

How to fetch source code?

Source code identification
origin specifies:

method: tarball, VCS as Git, Mercurial, Subversion, etc.
uri: upstream location (URL)

sha256: cryptographic hash

source code is essentially content-addressed

If uri becomes stale, e.g., URL no longer available or tempered (hash mismatch)
Then Blake can work around. (if a copy is available elsewhere)

Elsewhere might be
▶ a new URL

guix download finds the source with the expected hash and proceeds.
▶ a content-addressed server

as served by the Guix project or the Nix project, or the Software Heritage initiative.
S. Tournier Guix and long term: difficulties and countermeasures 26 / 40

The problem of Alice and Blake About long-term Work in progress

How to fetch source code?

Source type by sampled Guix revision

M
ay

5, 2019
A
ug.

25, 2019
D

ec.
29, 2019

A
pr.

19, 2020
A
ug.

9, 2020
N
ov.

29, 2020
M

ar.
21, 2021

Jul.
11, 2021

N
ov.

7, 2021
Feb.

27, 2022
Jun.

19, 2022
O

ct.
9, 2022

Jan.
29, 2023

M
ay

21, 2023
Sep.

10, 2023
Jan.

7, 2024

0

0.2

0.4

0.6

0.8

1
VCS checkout
File download

S. Tournier Guix and long term: difficulties and countermeasures 27 / 40

The problem of Alice and Blake About long-term Work in progress

How to fetch source code?

VCS source types by sampled Guix revision

M
ay

5, 2019
A
ug.

25, 2019
D

ec.
29, 2019

A
pr.

19, 2020
A
ug.

9, 2020
N
ov.

29, 2020
M

ar.
21, 2021

Jul.
11, 2021

N
ov.

7, 2021
Feb.

27, 2022
Jun.

19, 2022
O

ct.
9, 2022

Jan.
29, 2023

M
ay

21, 2023
Sep.

10, 2023
Jan.

7, 2024

0

0.2

0.4

0.6

0.8

1

Git
Subversion
Mercurial + Bazaar + CVS

S. Tournier Guix and long term: difficulties and countermeasures 28 / 40

The problem of Alice and Blake About long-term Work in progress

How to fetch source code?

File download types by sampled Guix revision (truncated at 50%)

M
ay

5, 2019
A
ug.

25, 2019
D

ec.
29, 2019

A
pr.

19, 2020
A
ug.

9, 2020
N
ov.

29, 2020
M

ar.
21, 2021

Jul.
11, 2021

N
ov.

7, 2021
Feb.

27, 2022
Jun.

19, 2022
O

ct.
9, 2022

Jan.
29, 2023

M
ay

21, 2023
Sep.

10, 2023
Jan.

7, 2024

0.6

0.7

0.8

0.9

1

.tar.gz .tar.xz .tar.bz2

.tar .zip Text
Other

S. Tournier Guix and long term: difficulties and countermeasures 29 / 40

The problem of Alice and Blake About long-term Work in progress

Architecture = connecting Guix and Software Heritage

https://guix.gnu.org/
sources.json

Software
Heritage User

 guix lint -c archival

 Vault

disarchive.
guix.gnu.org

Upstream

S. Tournier Guix and long term: difficulties and countermeasures 30 / 40

The problem of Alice and Blake About long-term Work in progress

Content-addressed, which address?

Why Disarchive? = issue with compressed tarballs
(sha256

(base32 "1df7b ..."))

$ guix hash harmony_1 .2.0. tar.gz
1df7b ...

$ guix hash \ # Fast compression
<(gzip -dc harmony_1.2.0.tar.gz | gzip -1 -c)

03v29...

$ guix hash \ # Best compression
<(gzip -dc harmony_1.2.0.tar.gz | gzip -9 -c)

10j87...

Process of creating compressed tarballs might vary.
(compression, timestamps, file properties, etc.)

Extract the compressed tarball
$ guix hash harmony-1.2.0 \

--serializer=nar
b7900...

$ guix hash harmony-1.2.0 \
--serializer=git

3a46b...

$ guix hash harmony-1.2.0 \
--serializer=git --hash=sha1

75b43...

Cryptographic hash algorithm and data serializer
are important for retrieving.

S. Tournier Guix and long term: difficulties and countermeasures 31 / 40

The problem of Alice and Blake About long-term Work in progress

Content-addressed, which address?

Why Disarchive? = issue with compressed tarballs
(sha256

(base32 "1df7b ..."))

$ guix hash harmony_1 .2.0. tar.gz
1df7b ...

$ guix hash \ # Fast compression
<(gzip -dc harmony_1.2.0.tar.gz | gzip -1 -c)

03v29...

$ guix hash \ # Best compression
<(gzip -dc harmony_1.2.0.tar.gz | gzip -9 -c)

10j87...

Process of creating compressed tarballs might vary.
(compression, timestamps, file properties, etc.)

Extract the compressed tarball
$ guix hash harmony-1.2.0 \

--serializer=nar
b7900...

$ guix hash harmony-1.2.0 \
--serializer=git

3a46b...

$ guix hash harmony-1.2.0 \
--serializer=git --hash=sha1

75b43...

Cryptographic hash algorithm and data serializer
are important for retrieving.

S. Tournier Guix and long term: difficulties and countermeasures 31 / 40

The problem of Alice and Blake About long-term Work in progress

Content-addressed, which address?

Why Disarchive? = issue with compressed tarballs
(sha256

(base32 "1df7b ..."))

$ guix hash harmony_1 .2.0. tar.gz
1df7b ...

$ guix hash \ # Fast compression
<(gzip -dc harmony_1.2.0.tar.gz | gzip -1 -c)

03v29...

$ guix hash \ # Best compression
<(gzip -dc harmony_1.2.0.tar.gz | gzip -9 -c)

10j87...

Process of creating compressed tarballs might vary.
(compression, timestamps, file properties, etc.)

Extract the compressed tarball
$ guix hash harmony-1.2.0 \

--serializer=nar
b7900...

$ guix hash harmony-1.2.0 \
--serializer=git

3a46b...

$ guix hash harmony-1.2.0 \
--serializer=git --hash=sha1

75b43...

Cryptographic hash algorithm and data serializer
are important for retrieving.

S. Tournier Guix and long term: difficulties and countermeasures 31 / 40

The problem of Alice and Blake About long-term Work in progress

Content-addressed, which address?

Disarchive disassemble output = description of metadata

(disarchive
(version 0)
(gzip-member

(name "harmony_1 .2.0. tar.gz")
(digest (sha256 "a63c7d7 ..."))
(header (mtime 1701246604) (extra-flags 0) (os 3))
(footer (crc 2567676087)

(isize 6225920))
(compressor gnu)
(input
(tarball

(name "harmony_1 .2.0. tar")
(digest (sha256 "6c50a34 ..."))
(default-header

(uid 1010)
(gid 100)
(chksum (trailer "␣"))
(magic "ustar␣")
;; more omitted

(headers
("harmony/"
(mode 493)
(mtime 1701246604)
(chksum 5084)
(typeflag 53))
;; many headers omitted
("harmony/inst/doc/Seurat.R"
(size 4130)
(mtime 1701214143)
(chksum 6701)))

(padding 0)
(input

(directory-ref
(version 0)
(name "harmony_1 .2.0")
(addresses

(swhid "swh:1:dir:75b4350a ..."))
(digest (sha256 "3a46bbf ..."))))))))

S. Tournier Guix and long term: difficulties and countermeasures 32 / 40

The problem of Alice and Blake About long-term Work in progress

How to get again source code?

Separate storage

file content at SWH
swh:1:dir:75b4350a. . .

Disarchive
assemble

tarball
tar.gz

Disarchive
disassemble

tarball metadata
disarchive.guix.gnu.org

S. Tournier Guix and long term: difficulties and countermeasures 33 / 40

The problem of Alice and Blake About long-term Work in progress

How to get again source code?

Retrieving source code = SWH Vault + Disarchive
https://guix.gnu.org/

sources.json

Software
Heritage User

 guix lint -c archival

 Vault

disarchive.
guix.gnu.org

Upstream content-address

Guix: “normalized archived” (nar) + sha256

SWH: SWHID = Git compatible sha1

Case: VCS checkouts
▶ SWH addresses content as SWHID and associates the nar-sha256 as external identifier.
▶ Guix queries using nar-sha256 and gets back SWHID.
▶ Guix asks SWH Vault to “cook” the files and fetch them.

Case: tarballs
▶ Using Disarchive disassemble output, from nar-sha256, Guix gets SWHID.
▶ Guix asks SWH Vault to “cook” the files and fetch them.
▶ Using Disarchive disassemble output, Guix assembles bit-identical compressed tarball.

S. Tournier Guix and long term: difficulties and countermeasures 34 / 40

The problem of Alice and Blake About long-term Work in progress

How to get again source code?

Retrieving source code = SWH Vault + Disarchive
https://guix.gnu.org/

sources.json

Software
Heritage User

 guix lint -c archival

 Vault

disarchive.
guix.gnu.org

Upstream content-address

Guix: “normalized archived” (nar) + sha256

SWH: SWHID = Git compatible sha1

Case: VCS checkouts
▶ SWH addresses content as SWHID and associates the nar-sha256 as external identifier.
▶ Guix queries using nar-sha256 and gets back SWHID.
▶ Guix asks SWH Vault to “cook” the files and fetch them.

Case: tarballs
▶ Using Disarchive disassemble output, from nar-sha256, Guix gets SWHID.
▶ Guix asks SWH Vault to “cook” the files and fetch them.
▶ Using Disarchive disassemble output, Guix assembles bit-identical compressed tarball.

S. Tournier Guix and long term: difficulties and countermeasures 34 / 40

The problem of Alice and Blake About long-term Work in progress

How to get again source code?

Retrieving source code = SWH Vault + Disarchive
https://guix.gnu.org/

sources.json

Software
Heritage User

 guix lint -c archival

 Vault

disarchive.
guix.gnu.org

Upstream content-address

Guix: “normalized archived” (nar) + sha256

SWH: SWHID = Git compatible sha1

Case: VCS checkouts
▶ SWH addresses content as SWHID and associates the nar-sha256 as external identifier.
▶ Guix queries using nar-sha256 and gets back SWHID.
▶ Guix asks SWH Vault to “cook” the files and fetch them.

Case: tarballs
▶ Using Disarchive disassemble output, from nar-sha256, Guix gets SWHID.
▶ Guix asks SWH Vault to “cook” the files and fetch them.
▶ Using Disarchive disassemble output, Guix assembles bit-identical compressed tarball.

S. Tournier Guix and long term: difficulties and countermeasures 34 / 40

The problem of Alice and Blake About long-term Work in progress

How to get again source code?

Coverage by sampled Guix revision

M
ay

5, 2019
A
ug.

25, 2019
D

ec.
29, 2019

A
pr.

19, 2020
A
ug.

9, 2020
N
ov.

29, 2020
M

ar.
21, 2021

Jul.
11, 2021

N
ov.

7, 2021
Feb.

27, 2022
Jun.

19, 2022
O

ct.
9, 2022

Jan.
29, 2023

M
ay

21, 2023
Sep.

10, 2023
Jan.

7, 2024

0.6

0.7

0.8

0.9

1

Stored
Missing
Undetermined

S. Tournier Guix and long term: difficulties and countermeasures 35 / 40

The problem of Alice and Blake About long-term Work in progress

Work in progress

guix time-machine --commit=v1.0.0 -- install r-harmony

Installs (and potentially rebuilds) Harmony defined in Guix 1.0.0 from 2019.

▶ This command exploits SWH support as it was in 2019: in its infancy.
▶ Recovery mechanism is itself improving over time.
▶ Mitigations:

▶ Delegate downloading to the Guix build daemon.
(special and dedicated “builders” as builtin:download or builtin:git-download)

▶ Recover source code referenced by past revisions using present-day techniques.

▶ Support more archive formats including lzip, Zip, unusual gzip compression.
▶ Deal with (long) cooking time by SWH Vault,

from minutes to days depending on artifact size and service load.

S. Tournier Guix and long term: difficulties and countermeasures 36 / 40

The problem of Alice and Blake About long-term Work in progress

Concretely, does it work for real?

Rebuilding the whole only from SWH
My attempts:
▶ June 2023 redoing paper from 2020 (link)

▶ December 2023 redoing paper from 2022 (link)

Two main difficulties remain:
▶ Bootstrapping binary seed rooting the graph of dependencies

▶ storing the seed itself
▶ rebuilding from the seed, if needed

▶ Time bomb deterministic build depends on date
▶ We can fix the future not the past.
▶ March 2024: Adventures on the quest for long-term reproducible deployment (link)

Conclusion: tool still missing

Exploration of ideas
https://simon.tournier.info/posts/2024-04-11-rewrite-drv.html

S. Tournier Guix and long term: difficulties and countermeasures 37 / 40

https://simon.tournier.info/posts/2023-06-23-hackathon-repro.html
https://simon.tournier.info/posts/2023-12-21-repro-paper.html
https://guix.gnu.org/en/blog/2024/adventures-on-the-quest-for-long-term-reproducible-deployment
https://simon.tournier.info/posts/2024-04-11-rewrite-drv.html

The problem of Alice and Blake About long-term Work in progress

Concretely, does it work for real?

Rebuilding the whole only from SWH
My attempts:
▶ June 2023 redoing paper from 2020 (link)

▶ December 2023 redoing paper from 2022 (link)

Two main difficulties remain:
▶ Bootstrapping binary seed rooting the graph of dependencies

▶ storing the seed itself
▶ rebuilding from the seed, if needed

▶ Time bomb deterministic build depends on date
▶ We can fix the future not the past.
▶ March 2024: Adventures on the quest for long-term reproducible deployment (link)

Conclusion: tool still missing

Exploration of ideas
https://simon.tournier.info/posts/2024-04-11-rewrite-drv.html

S. Tournier Guix and long term: difficulties and countermeasures 37 / 40

https://simon.tournier.info/posts/2023-06-23-hackathon-repro.html
https://simon.tournier.info/posts/2023-12-21-repro-paper.html
https://guix.gnu.org/en/blog/2024/adventures-on-the-quest-for-long-term-reproducible-deployment
https://simon.tournier.info/posts/2024-04-11-rewrite-drv.html

Opening word Appendix

Reproducible computational environment, when? (opinionated)

when collective practises will stop to promote engineering methods

engineering method science method
what do we gain compared to current? vs what do we understand compared to current?

redo the past = already hard tasks

Thanks Guix, the situation is improving over the years

S. Tournier Guix and long term: difficulties and countermeasures 38 / 40

Opening word Appendix

Mnemosyne Cronus
pearls scythe

memory time

We cannot predict beforehand
what the scythe will cut

Pearls
▶ simple made easy
▶ efficient means robust
▶ content-addressed, intrinsic identifier, inherent reference
▶ transparent and auditable computational environment
▶ focus on user-autonomy

Is Guix one pearl against the scythe?
small cookie for thought: Is Guix Simple or Easy?

S. Tournier Guix and long term: difficulties and countermeasures 39 / 40

Opening word Appendix

The vision to reach

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

Questions?

guix-science@gnu.org

dedicated Mattermost (chat) (link)

https://hpc.guix.info/events/2024-2025/café-guix/

https://mattermost.univ-nantes.fr/signup_user_complete/?id=njdxbdazafddtq6wsm6cgrr95r
https://hpc.guix.info/events/2024-2025/café-guix/

Appendix

Opening word Appendix

Example of VCS retrieval

building /gnu/store/agsi5ynwvmyfscc2avxkf7i3089m1p0i-scons-3.0.4-checkout.drv...
Initialized empty Git repository in /gnu/store/2p3cb96q8zk2pnarcnkwaifqw3l8gc70-scons-3.0.4-checkout/.git/
fatal: unable to access ’https://github.com/SCons/scons.git/’: Could not resolve host: github.com
Failed to do a shallow fetch; retrying a full fetch...
fatal: unable to access ’https://github.com/SCons/scons.git/’: Could not resolve host: github.com
git-fetch: ’/gnu/store/lcygm0p2d59acvwi12lwldg5c0d4czpr-git-minimal-2.41.0/bin/git fetch origin’
failed with exit code 128
Trying content-addressed mirror at bordeaux.guix.gnu.org...
Unable to fetch from bordeaux.guix.gnu.org, getaddrinfo-error: (-2)
Trying content-addressed mirror at ci.guix.gnu.org...
Unable to fetch from ci.guix.gnu.org, getaddrinfo-error: (-2)
Trying content-addressed mirror at bordeaux.guix.gnu.org...
Unable to fetch from bordeaux.guix.gnu.org, getaddrinfo-error: (-2)
Trying to download from Software Heritage...
SWH: found directory
with nar-sha256 hash 16a209173f87735020b29d84f497d44204cbcf86a451066342c51ff47996c8f7
at ’swh:1:dir:d3d1330dfc409be4624a01d384868fea0427c4c3’
swh:1:dir:d3d1330dfc409be4624a01d384868fea0427c4c3/
swh:1:dir:d3d1330dfc409be4624a01d384868fea0427c4c3/.appveyor.yml
...
successfully built /gnu/store/agsi5ynwvmyfscc2avxkf7i3089m1p0i-scons-3.0.4-checkout.drvS. Tournier Guix and long term: difficulties and countermeasures 40 / 40

Opening word Appendix

Example of tarball retrieval

Trying to use Disarchive to assemble /gnu/store/zwmrwlb2l53xbllxcw3axad54kyqcplp-Python-3.12.2.tar.xz...
Retrieving Disarchive spec
from https://disarchive.guix.gnu.org/sha256/be28112dac813d2053545c14bf13a16401a21877f1a69eb6ea5d84c4a0f3d870 ...
Assembling the directory Python-3.12.2
Downloading /gnu/store/zwmrwlb2l53xbllxcw3axad54kyqcplp-Python-3.12.2.tar.xz from Software Heritage...
SWH vault: requested bundle cooking, waiting for completion...
SWH vault: Processing...
swh:1:dir:72d77318a8c52ddfc004251fb7297799135704e6/
swh:1:dir:72d77318a8c52ddfc004251fb7297799135704e6/Python-3.12.2/pyconfig.h.in
...
Checking Python-3.12.2 digest... ok
Assembling the tarball Python-3.12.2.tar
Checking Python-3.12.2.tar digest... ok
Assembling the XZ file Python-3.12.2.tar.xz
Checking Python-3.12.2.tar.xz digest... ok
Copying result to /gnu/store/zwmrwlb2l53xbllxcw3axad54kyqcplp-Python-3.12.2.tar.xz
successfully built /gnu/store/nx97h7yr21l04nn60mqlf1yzfyxj06jh-Python-3.12.2.tar.xz.drv
source is at ’Python-3.12.2’
applying ’/gnu/store/cdla0h7pcnckxlk3aflik3zsmbsfxzfp-python-3-deterministic-build-info.patch’...
applying ’/gnu/store/ns40bs4bs19syckgh7v37rbxax0wfq01-python-3.12-fix-tests.patch’...
applying ’/gnu/store/d7xlln76p372rssay94xkwbzf9p9p1rn-python-3-hurd-configure.patch’...
successfully built /gnu/store/y6s4xxsk5fc5909wafcvp2mxh5lc6c65-Python-3.12.2.tar.xz.drv

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

Opening word Appendix

Example of bugs (read Missing in Coverage)

Trying to download from Software Heritage...
SWH: found directory
with nar-sha256 hash c98bd6991721d60b9a79600428bfbe8db0aaac3d383cd2df803ed7867c7cb63b
at ’swh:1:dir:218d95849f10fc0691d7dfa80999ce5061e654ef’
swh:1:dir:218d95849f10fc0691d7dfa80999ce5061e654ef/
...
swh:1:dir:218d95849f10fc0691d7dfa80999ce5061e654ef/wisp.py
r:sha256 hash mismatch for /gnu/store/7pcac04x82wyhknyfkdwhk3j958n2r75-guile-wisp-1.0.7-checkout:

expected hash: 0fxngiy8dmryh3gx4g1q7nnamc4dpszjh130g6d0pmi12ycxd2y9
actual hash: 0z7y487nnmw22xry82bb75shwp50gacm4kbwn01vhhli2bchpx37

hash mismatch for store item ’/gnu/store/7pcac04x82wyhknyfkdwhk3j958n2r75-guile-wisp-1.0.7-checkout’
build of /gnu/store/8lcrd6n6m18hzh9dszm8c1xhjyfd54d9-guile-wisp-1.0.7-checkout.drv failed
View build log at ’/var/log/guix/drvs/8l/crd6n6m18hzh9dszm8c1xhjyfd54d9-guile-wisp-1.0.7-checkout.drv.gz’.
guix build: error: build of ‘/gnu/store/8lcrd6n6m18hzh9dszm8c1xhjyfd54d9-guile-wisp-1.0.7-checkout.drv’ failed

Bug report #5093 (SWH)
Patch #71631 (Guix)

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

https://gitlab.softwareheritage.org/swh/meta/-/issues/5093
https://issues.guix.gnu.org/71631

Opening word Appendix

how to redeploy later and elsewhere what has been deployed today and here?

Traceability and transparency

being collectively able to study bug-to-bug

Guix should manage everything about the environment

guix time-machine -C state.scm -- cmd -m list-software.scm

if it is specified

« how to build » channels.scm (state)

« what to build » manifest.scm (software list)

What is required in addition to these 2 files?

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

Opening word Appendix

how to redeploy later and elsewhere what has been deployed today and here?

Traceability and transparency

being collectively able to study bug-to-bug

Guix should manage everything about the environment

guix time-machine -C state.scm -- cmd -m list-software.scm

if it is specified

« how to build » channels.scm (state)

« what to build » manifest.scm (software list)

What is required in addition to these 2 files?

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

Opening word Appendix

Preservation of what? (1/3)

guix time-machine -C channels.scm -- shell -m manifest.scm

⋆ each channel used by channels.scm (= Git repository defining packages)
⋆ code source used by manifest.scm (= URI pointing to upstream)

(define python ;package definition
(package

(name "python")
(version "3.9.9")
(source ...) ;package source
(build-system gnu-build-system)
(arguments ...)
(inputs (list ...))))

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

Opening word Appendix

Preservation of what? (2/3)

example of source

(source
(origin

(method url-fetch)
(uri (string-append "https: //www.python.org/ftp/python/"

version "/Python-" version ".tar.xz"))
(patches (search-patches ...))
(sha256
(base32
"09 vd7g71i11iz5ydqghwc8kaxr0vgji94hhwwnj77h3kll28r0h6"))))

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

Opening word Appendix

Preservation of what? (3/3)
▶ Git repository (channel)
▶ source

▶ archive tarballs (compressed) url-fetch
▶ Git repository git-fetch
▶ Subversion repository svn-fetch
▶ Mercurial repository hg-fetch
▶ CVS repository cvs-fetch

$ guix repl -- sources.scm | sort | uniq -c | sort -nr
13432 url-fetch
6691 git-fetch
391 svn-fetch
43 other
31 hg-fetch
3 cvs-fetch

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

Opening word Appendix

Preservation of what? (3/3)
▶ Git repository (channel)
▶ source

▶ archive tarballs (compressed) url-fetch
▶ Git repository git-fetch
▶ Subversion repository svn-fetch
▶ Mercurial repository hg-fetch
▶ CVS repository cvs-fetch

$ guix repl -- sources.scm | sort | uniq -c | sort -nr
13432 url-fetch
6691 git-fetch
391 svn-fetch
43 other
31 hg-fetch
3 cvs-fetch

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

Opening word Appendix

Why preserving?

Because online services sometimes stop
▶ Google Code (link) early 2016
▶ Alioth (Debian) in 2018 replaced by Salsa
▶ Gna! in 2017 after 13 years
▶ Gitourious in 2015 (the second most popular service for hosting Git repository in 2011)
▶ etc.

▶ gforge.inria.fr for example Guix issue #42162 (link)
Believe it or not, gforge.inria.fr was finally phased out on
Sept. 30th. And believe it or not, despite all the work and all the
chat :-), we lost the source tarball of Scotch 6.1.1 for a short period
of time (I found a copy and uploaded it to berlin a couple of hours
ago).

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

https://code.google.com/archive/
https://salsa.debian.org/public
https://issues.guix.gnu.org/42162

Opening word Appendix

Why preserving?

Because online services sometimes stop
▶ Google Code (link) early 2016
▶ Alioth (Debian) in 2018 replaced by Salsa
▶ Gna! in 2017 after 13 years
▶ Gitourious in 2015 (the second most popular service for hosting Git repository in 2011)
▶ etc.
▶ gforge.inria.fr for example Guix issue #42162 (link)

Believe it or not, gforge.inria.fr was finally phased out on
Sept. 30th. And believe it or not, despite all the work and all the
chat :-), we lost the source tarball of Scotch 6.1.1 for a short period
of time (I found a copy and uploaded it to berlin a couple of hours
ago).

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

https://code.google.com/archive/
https://salsa.debian.org/public
https://issues.guix.gnu.org/42162

Opening word Appendix

How to preserve?

Forge ̸= Archive

collaborative software platform for developing
L’objectif d’une forge est de permettre à plusieurs développeurs de participer ensemble au

développement d’un ou plusieurs logiciels, le plus souvent à travers le réseau Internet.

https://fr.wikipedia.org/wiki/Forge_(informatique)

(no English wikipedia entry)
L’archivage est un ensemble d’actions qui a pour but de garantir l’accessibilité sur le long terme

d’informations (dossiers, documents, données) que l’on doit ou souhaite conserver pour des
raisons juridiques

https://fr.wikipedia.org/wiki/Archivage

Software Heritage « are building the universal software archive » (link)
S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

https://fr.wikipedia.org/w/index.php?title=Forge_(informatique)&oldid=192671997
https://fr.wikipedia.org/w/index.php?title=Archivage&oldid=186832550
https://www.softwareheritage.org/

Opening word Appendix

Online service sometimes stop. . .

Why would it be different for Software Heritage?

No guarantee but. . .

Software Heritage is an open, non-profit initiative unveiled in 2016 by Inria. It is supported by a
broad panel of institutional and industry partners, in collaboration with UNESCO.

The long term goal is to collect all publicly available software in source code form together with
its development history, replicate it massively to ensure its preservation, and share it with

everyone who needs it.

▶ Strong support by national and international institutes
▶ With the mission to specifically archive all the open source code

(SWH demo?)

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

Opening word Appendix

Preservation with Software Heritage
https://www.softwareheritage.org/

collect and preserve software in source code form in the very long term
(not a forge!)

Guix is able:
▶ save source code from Guix package definition and the Guix package definition itself
▶ use Software Heritage archive as fallback if upstream source disappears

Questions:
▶ How to cite a software? Reference to source code only? Dependencies? Build options?
▶ Intrinsic identifier (depends only on the object; as checksum)

vs Extrinsic identifier
(depends on a register to keep the correspondence between identifier and object; as label version)

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

https://www.softwareheritage.org/

Opening word Appendix

Fallback in action

$ guix time-machine -C channels.scm -- shell -m manifest.scm
Updating channel ’guix’ from Git repository at ’https://git.savannah.gnu.org/git/guix.git’...
Updating channel ’example’ from Git repository at ’https://whatever-here.org/does-not-matter.git’...
SWH: found revision 67c9f2143aa6f545419ae913b4ae02af4cd3effc with directory at ’https://archive.softwareheritage.org/api/1/directory/fe423e88ce277d3fc230c88d408e42b14a3a458c/’
SWH vault: requested bundle cooking, waiting for completion...
swh:1:rev:67c9f2143aa6f545419ae913b4ae02af4cd3effc.git/
[...]
fatal: could not read Username for ’https://github.com’: No such device or address
Trying content-addressed mirror at berlin.guix.gnu.org...
Trying to download from Software Heritage...
SWH: found revision e1eefd033b8a2c4c81babc6fde08ebb116c6abb8 with directory at’https://archive.softwareheritage.org/api/1/directory/c3e538ed2de412d54c567ed7c8cfc46cbbc35d07/’
[...]

https://simon.tournier.info/posts/2021-10-25-software-heritage.html
S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

https://simon.tournier.info/posts/2021-10-25-software-heritage.html

Opening word Appendix

Redo the past

Being able to redeploy from now the same computational environment as 3 years ago

It requires:

▶ Exact same source code
▶ Rebuild on compatible hardware
▶ Deterministic rebuild

hard engineering tasks

S. Tournier Guix and long term: difficulties and countermeasures 40 / 40

	The problem of Alice and Blake
	Capturing what?
	The Guix's way
	Still issues!
	Food for thought

	About long-term
	Preservation of what? and why?
	Still publicly available?
	
	How to fetch source code?
	
	Content-addressed, which address?
	How to get again source code?

	Work in progress
	
	Concretely, does it work for real?

	Appendix
	Opening word
	Appendix

