
Generating a Controled Software
Environment with Debian Snapshot Archive

Arnaud Legrand, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP

Software Environment Reproducibility, May 2021

http://hpc.guix.info/events/2021/atelier-reproductibilité-environnements

Context

Personal History

The early days (1997) tried Redhat, Slackware, Debian
• Regularly compiled my kernel to have the right modules
• Feared everytime I had to reconfigure X
• Updates through a 56kbps modem or a Zip drive

Happy Debian User since ≈ 1998
• Switched to Ubuntu for a few months but I quickly got back to
Debian!

• Debian stable versions are often outdated. I live on the edge
with Debian unstable most of the time

• I install stuff whenever I need and upgrade every 2-3 months

1/14

Software Management

Open source by default (except for Nvidia drivers and video codecs)
Source is provided to this software because we believe users have a right to
know exactly what a program is going to do before they run it.

– Nmap Reference Guide

Install everything through apt (since ≈ 1999)
• Several friends were Debian developpers
To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software. – Ken Thompson, 1984

• The only code I compile is mostly my own (in OCAML, C, perl)
• For a while, when using R, I had to install recent libraries with
install.packages

• Works well but this is bad practice
• I generally ”hate” python and the pip ecosystem

In my perspective software environment was never a real problem
• Just run apt update; apt install
• Enjoy all the most up-to-date software with bugfixes

2/14

10 years reproducibility challenge

http://rescience.github.io/ten-years/
3/14

http://rescience.github.io/ten-years/

A 2009 Article

”Accuracy Study and Improvement of Network Simulation in the SimGrid
Framework”, Velho and Legrand, SimuTools 2009

Simulation comparison coarse-grain (SimGrid) vs. fine-grain (GTNetS)
• Compare a fluid bandwidth sharing model (SimGrid) with a
packet-level model (GTNetS) of TCP

• Mostly simulations: 3 kind of network topologies, parameterized and
randomized workload

Simulation workflow
Inputs
platform-template.xml
deployment-template.xml

Simulator
./gtnets --args=...

libSimGrid
libGTNetS

Master simulation script
sweep-parse.pl

sweep-parse.pl R, perl, gnuplot

--cfg=fluid

--cfg=packet_level

Logs
output-*.txt

Comparison results
data.dat

Values, text,
and graphics

Already a reproduction effort ”Speed and Accuracy of Network Simulation in
the SimGrid Framework”, Fujiwara and Casanova, ValueTools 2007

• We could not obtain the exact same results so we took notes and
tried to make stuff available 4/14

Getting my Hands Dirty

Step 1: Getting the pieces together

Finding out data and instructions
• Do not trust your memory, ask the PhD student and his
webpage!

• Provides GTNetS, the patches to apply and detailed
instructions for SimGrid integration

• Experiments run in late 2008; previous SimGrid release ≈ 2007
Figuring out software versions

• GTNets: discontinued development since October 2008
• SimGrid dates from 2000 and Martin Quinson cares a lot:

• Was hosted on gforge.inria.fr, then github.com (2010)
and gitlab.inria.fr, and now framagit

• SimGrid v3.3? Stable releases (autotools) are only on
gforge.inria.fr

5/14

http://mescal.imag.fr/membres/pedro.velho/publications.html
https://gforge.inria.fr/projects/simgrid/
https://github.com/simgrid/simgrid/
https://gitlab.inria.fr/simgrid/simgrid
https://framagit.org/simgrid/simgrid/

Step 2: Building an environment and compiling code

Shallow (but useful) description (README)
Author : Pedro Velho
last modified : 03/11/2008

1. Disclaimer [...]
2. Short History [...]
3. Directory Structure [...]
4. Global System Requirements

- GTNets patched simgrid version, we kindly provide GTNets with
patches in the simgrid contrib svn repository [FIXME]

- SimGrid, configured and compiled with GTNets support [FIXME]
For plotting graphs and explore the data:
- R - the gnu version of S [FIXME]
- Gnuplot [FIXME]

Dependencies
• perl, R, gnuplot: easy!!
• simgrid: easy (autotools, C, a bit of C++ for GTNets)
• gtnets: Qt3!!!

I really need a 2009 software environment!!!

6/14

Using Docker

Let’s grab a docker image from a 10 years old distro and consider
Pedro used Debian stable (codename Lenny back then)

docker search debian-lenny

NAME DESCRIPTION
pblaszczyk/debian-lenny 5.0.10 amd64
lpenz/debian-lenny-amd64 Debian 5.0.10 Released 10 March 2012 for amd…
lpenz/debian-lenny-i386 Debian 5.0.10 Released 10 March 2012 for i386
...

Then write the Dockerfile

7/14

Docker file (1/2)

FROM lpenz/debian-lenny-i386

Software dependencies
RUN apt-get update \

&& apt-get install -y --force-yes gcc g++ make wget \
unzip subversion patch less libqt3-mt \
libqt3-headers libqt3-mt-dev qt3-dev-tools

Downloading GTNetS
RUN cd /root; svn checkout \

svn://scm.gforge.inria.fr/svn/simgrid/contrib/trunk/GTNetS/
Downloading SimGrid
RUN cd /root; wget \

https://gforge.inria.fr/frs/download.php/file/21430/simgrid-3.3.tar.gz

8/14

Docker file (2/2)

Building GTNetS
RUN cd /root/GTNetS/; unzip gtnets-current.zip ; tar zxvf gtnets-current-patch.tgz
RUN cd /root/GTNetS/gtnets-current; cat ../00*.patch | patch -p1
RUN cd /root/GTNetS/gtnets-current; ln -sf Makefile.linux Makefile && \

make depend && make opt

Installing GTNetS
RUN cd /root/GTNetS/gtnets-current/ && \

mkdir -p /root/usr/lib/ && \
ln -sf `pwd`/libgtsim-opt.so /root/usr/lib/libgtnets.so && \
ln -sf `pwd`/libgtsim-opt.so /usr/lib/libgtnets.so && \
mkdir -p /root/usr/include/ && \
cp -fr SRC/*.h /root/usr/include/

Building SimGrid
RUN cd /root/ && tar zxf simgrid-3.3.tar.gz
RUN cd /root/simgrid-3.3/ && \

./configure --with-gtnets=/root/usr/ && \
export LD_LIBRARY_PATH=/root/usr/lib/libgtnets.so && \
ldconfig && \
make

RUN apt-get clean

9/14

Debian snapshot-archive…

It all went super smooth thanks to the instructions in the README

What’s broken in this Dockerfile?

• gforge.inria.fr will die in a few months
• Use Software Heritage instead (zip files in an svn… shame)
• TODO: Save all simgrid stable archives (zenodo ?)

• FROM lpenz/debian-lenny-i386
• /etc/apt/sources.list indicates:

deb http://archive.debian.org/debian lenny main

Last version (5.0.10) dates from March 2012
• Debian Snapshot

deb https://snapshot.debian.org/archive/debian/20091004T111800Z/
lenny main

10/14

https://archive.softwareheritage.org/browse/origin/directory/?origin_url=svn://scm.gforge.inria.fr/svn/simgrid/contrib/trunk/GTNetS/&path=contrib/trunk/GTNetS
https://snapshot.debian.org/

… and the debuerrotype!!!

Discover the debuerreotype

debuerreotype-init rootfs testing 2009-05-01-T03:27:08Z

A few important things to know:

• Requires root privileges (see issue 66)
• --keyring=/usr/share/keyrings/debian-archive-
removed-keys.gpg

• vsyscall=emulate (see issue 80)

This is the right way to proceed

but I was in the plane and fought against this vsyscall=emulate thing when I tried

11/14

https://github.com/debuerreotype/debuerreotype
https://github.com/debuerreotype/debuerreotype/issues/66
https://github.com/debuerreotype/debuerreotype/issues/80

Step 3: run stuff

Inputs
platform-template.xml
deployment-template.xml

Simulator
./gtnets --args=...

libSimGrid
libGTNetS

Master simulation script
sweep-parse.pl

sweep-parse.pl R, perl, gnuplot

--cfg=fluid

--cfg=packet_level

Logs
output-*.txt

Comparison results
data.dat

Values, text,
and graphics

• A home-made perl script with hard-coded paths (painful but
worked)

• Obtained the same intermediate results (thanks to the bin/ log/
dat/ organization)

• Long computation stopped it before the end
• But I could run the analysis and obtained similar output (linear
regression, 3D plot)

• Only ran the simulation and the analysis
• no workload generation (no information was given, but it would
have required Java and no information on the seed was kept)

12/14

Conclusion

Conclusion on the challenge

I greatly underestimated:

1. Link rot (simgrid, gforge closure, webpage)
2. Lack of automation (org-mode or snakemake would have made
everything much simpler)

3. Environment reconstruction (limited information)
• Yet, I could easily rebuild a working environment (Debian)
• Was it the exact same code ?

• ¯_(°_o)_/¯ gave the same results for the parts I ran

13/14

Conclusion on Docker

Docker is easy to use but does not provide with any help/warranty!

Docker can be quite helpful for the average scientist to build
reproducible environments provided a few precautions are taken:

1. Regularly work in a container with minimal dependencies
• Also separate the code from the data (, which can be painful)

2. Use high quality and trusted software packages (Debian)
To what extent should one trust a statement that a program is free
of Trojan horses? Perhaps it is more important to trust the people
who wrote the software. – Ken Thompson, 1984

3. Freeze the sources (debian snapshot-archive)
4. Document the creation (the DockerHub is not an archive!)

What if I had to redo this today (e.g., with snakemake)

• ship snakemake in my docker image ? Nope!
• snakemake in docker running my code in singularity ?

14/14

	Context
	Getting my Hands Dirty
	Conclusion

